Despite the seminal connection between classical multiply-periodic motion and
Heisenberg matrix mechanics and the massive amount of work done on the
associated problem of semiclassical (EBK) quantization of bound states, we show
that there are, nevertheless, a number of previously unexploited aspects of
this relationship that bear on the quantum-classical correspondence. In
particular, we emphasize a quantum variational principle that implies the
classical variational principle for invariant tori. We also expose the more
indirect connection between commutation relations and quantization of action
variables. With the help of several standard models with one or two degrees of
freedom, we then illustrate how the methods of Heisenberg matrix mechanics
described in this paper may be used to obtain quantum solutions with a modest
increase in effort compared to semiclassical calculations. We also describe and
apply a method for obtaining leading quantum corrections to EBK results.
Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.