397 research outputs found

    EUS-guided drainage using lumen apposing metal stent and percutaneous endoscopic necrosectomy as dual approach for the management of complex walled-off necrosis: a case report and a review of the literature

    Get PDF
    Background: Endoscopic ultrasound-guided drainage is suggested as the first approach in the management of symptomatic and complex walled-off pancreatic necrosis. Dual approach with percutaneous drainage could be the best choice when the necrosis is deep extended till the pelvic paracolic gutter; however, the available catheter could not be large enough to drain solid necrosis neither to perform necrosectomy, entailing a higher need for surgery. Therefore, percutaneous endoscopic necrosectomy through a large bore percutaneous self-expandable metal stent has been proposed. Case presentation: In this study, we present the case of a 61-year-old man admitted to our hospital with a history of sepsis and persistent multiorgan failure secondary to walled-off pancreatic necrosis due to acute necrotizing pancreatitis. Firstly, the patient underwent transgastric endoscopic ultrasound-guided drainage using a lumen-apposing metal stent and three sessions of direct endoscopic necrosectomy. Because of recurrence of multiorgan failure and the presence of the necrosis deeper to the pelvic paracolic gutter at computed tomography scan, we decided to perform percutaneous endoscopic necrosectomy using an esophageal self-expandable metal stent. After four sessions of necrosectomy, the collection was resolved without complications. Therefore, we perform a revision of the literature, in order to provide the state-of-art on this technique. The available data are, to date, derived by case reports and case series, which showed high rates both of technical and clinical success. However, a not negligible rate of adverse events has been reported, mainly represented by fistulas and abdominal pain. Conclusion: Dual approach, using lumen apposing metal stent and percutaneous self-expandable metal stent, is a compelling option of treatment for patients affected by symptomatic, complex walled-off pancreatic necrosis, allowing to directly remove large amounts of necrosis avoiding surgery. Percutaneous endoscopic necrosectomy seems a promising technique that could be part of the step-up-approach, before emergency surgery. However, to date, it should be reserved in referral centers, where a multidisciplinary team is disposable

    Relationship between cytokine release and stress hyperglycemia in patients hospitalized with COVID-19 infection

    Get PDF
    Introduction: Stress hyperglycemia is a frequent finding in patients with COVID-19 infection and could affect the outcome of disease. Cytokines released in response to infection could have adverse effects on insulin sensitivity and pancreatic beta-cell function. The aim of the study was to examine the relationships of stress hyperglycemia with cytokines and clinical outcomes in hospitalized patients with COVID-19. Methods: In a cross-sectional analysis of 150 patients hospitalized for COVID-19 infection who were included in the GIRA-COVID database, we identified patients with stress hyperglycemia by calculation of the Stress Hyperglycemia Ratio (SHR) and use of a cut-off of 1.14. Plasma levels of cytokines principally involved in COVID-19 infection-related cytokine storm were measured. Outcome variables were use of mechanical ventilation and death within 60 days from hospital admission. Results: Patients with SHR > 1.14 had significantly higher plasma insulin, HOMA-index, and levels of interleukin-10 (IL-10), interleukin-10/tumor necrosis factor-a ratio (IL-10/TNF-α), and CXC motif chemokine ligand 10 (CXCL10) than patients with SHR ≤ 1.14. IL-10, IL-10/TNF-α ratio, CXCL10, and IFN-γ were significantly and directly related with SHR in univariate analysis and multivariate logistic regression models showed that IL-10, IL-10/TNF-α ratio, and CXCL10 were independently associated with SHR>1.14. In a multivariate logistic model, stress hyperglycemia predicted use of mechanical ventilation (OR 2.453; CI 1.078–6.012) and death (OR 2.281; CI 1.049–7.369) independently of diabetes and other major confounders. Conclusions: In patients hospitalized for COVID-19 infection, stress hyperglycemia is associated with worse clinical outcomes and is independently related to levels of cytokines that might impair glucose homeostasis

    Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd-CeO2

    Get PDF
    The methane dry reforming (DRM) reaction mechanism was explored via mechanochemically prepared Pd/CeO2 catalysts (PdAcCeO2M), which yield unique Pd-Ce interfaces, where PdAcCeO2M has a distinct reaction mechanism and higher reactivity for DRM relative to traditionally synthesized impregnated Pd/CeO2 (PdCeO2IW). In situ characterization and density functional theory calculations revealed that the enhanced chemistry of PdAcCeO2M can be attributed to the presence of a carbon-modified Pd0 and Ce4+/3+ surface arrangement, where distinct Pd-CO intermediate species and strong Pd-CeO2 interactions are activated and sustained exclusively under reaction conditions. This unique arrangement leads to highly selective and distinct surface reaction pathways that prefer the direct oxidation of CHx to CO, identified on PdAcCeO2M using isotope labeled diffuse reflectance infrared Fourier transform spectroscopy and highlighting linear Pd-CO species bound on metallic and C-modified Pd, leading to adsorbed HCOO [1595 cm-1] species as key DRM intermediates, stemming from associative CO2 reduction. The milled materials contrast strikingly with surface processes observed on IW samples (PdCeO2IW) where the competing reverse water gas shift reaction predominates

    Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction

    Get PDF
    Cardiomyocyte proliferation stops at birth when the heart is no longer exposed to maternal blood and, likewise, to regulatory T cells (Tregs) that are expanded to promote maternal tolerance towards the fetus. Here, we report a role of Tregs in promoting cardiomyocyte proliferation. Treg-conditioned medium promotes cardiomyocyte proliferation, similar to the serum from pregnant animals. Proliferative cardiomyocytes are detected in the heart of pregnant mothers, and Treg depletion during pregnancy decreases both maternal and fetal cardiomyocyte proliferation. Treg depletion after myocardial infarction results in depressed cardiac function, massive inflammation, and scarce collagen deposition. In contrast, Treg injection reduces infarct size, preserves contractility, and increases the number of proliferating cardiomyocytes. The overexpression of six factors secreted by Tregs (Cst7, Tnfsf11, Il33, Fgl2, Matn2, and Igf2) reproduces the therapeutic effect. In conclusion, Tregs promote fetal and maternal cardiomyocyte proliferation in a paracrine manner and improve the outcome of myocardial infarction

    Caspase-2 is upregulated after sciatic nerve transection and its inhibition protects dorsal root ganglion neurons from Apoptosis after serum withdrawal

    Get PDF
    Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2(CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevated levels of cleaved CASP2 (C-CASP2), compared to cleaved caspase-3 (C-CASP3), within TUNEL+DRGN and DRG glia (satellite and Schwann cells) after SN transection. A serum withdrawal cell culture model, which induced 40% apoptotic death in DRGN and 60% in glia, was used to model DRGN loss after neurotrophic factor withdrawal. Elevated C-CASP2 and TUNEL were observed in both DRGN and DRG glia, with C-CASP2 localisation shifting from the cytosol to the nucleus, a required step for induction of direct CASP2-mediated apoptosis. Furthermore, siRNAmediated downregulation of CASP2 protected 50% of DRGN from apoptosis after serum withdrawal, while downregulation of CASP3 had no effect on DRGN or DRG glia survival. We conclude that CASP2 orchestrates the death of SN-axotomised DRGN directly and also indirectly through loss of DRG glia and their local neurotrophic factor support. Accordingly, inhibiting CASP2 expression is a potential therapy for improving both the SN regeneration response and peripheral sensory recovery

    Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer

    Get PDF
    In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa
    • …
    corecore