A Predicate Transformer for Unification

L. Colussi, E. Marchiori

Computer Science/Department of Software Technology

CS-R9227 1992

https://core.ac.uk/display/301653901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Predicate Transformer for Unification

Livio Colussi
Dipartimento di Matematica Pura ed Applicata
Universita di Padova, Via Belzoni 7, 35131 Padova, Italy

Elena Marchiori
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and
Dipartimento di Matematica Pura ed Applicata
Universita di Padova, Via Belzoni 7, 35131 Padova, Italy

Abstract

In this paper we study unification as predicate transformer. Given a unification problem
expressed as a set of sets of terms U and a predicate P, we are interested in the strongest
predicate R (w.r.t. the implication) s.t. if P holds before the unification of ¢ then R holds
when the unification is performed. We introduce a Dijkstra-style calculus that given P and
U computes R. We prove the soundness, completeness and termination of the calculus.
The predicate language considered contains monotonic predicates together with some non-
monotonic predicates like var, ~ground, share and —share. This allows to use the calculus
for the static analysis of run-time properties of Prolog programs.

1985 Mathematics Subject Classification: 68Q40, 68Q60, 68T15.

CR Categories: ¥.3.1., F.4.1, 1.2.3.

Keywords and Phrases: Unification, strongest postcondition, Prolog programs, forward se-
mantics.

Note: With minor variations, this paper will appear in the Proceedings of the 1992 Joint
International Conference and Symposium on Logic Programming, Washington, D.C.; U.S.A.,

The MIT Press.

1 Introduction

The standard view of logic programming is declarative, i.e. a program describes some predicate
or function without referring to the way it will be computed. Nevertheless computational aspects
become fundamental for the study of run-time properties of Prolog programs, like the actual
form of the arguments of a goal before and after its call. In Prolog unification is the main
computational mechanism since it produces the value of the variables during the execution of
a goal in a program. To study its effect on the values of variables we study unification by
means of predicate transformers. The use of predicate transformers for semantic analysis has
been studied in the setting of imperative programming: it was advocated by Floyd [5] and by
Dijkstra [3] for program verification. The use of predicate transformers in the framework of
logic programming is new. Given a unification problem expressed by a set of sets of terms U,
we introduce the predicate transformer sp.f such that sp.lf.P is semantically equivalent to the

strongest predicate R (w.r.t. implication) s.t. if P holds before the unification of ¢/, then R holds
when the unification is performed. We show that sp.l/.P could be computed in one step if P were
a monotonic predicate. Since our aim is to infer run-time properties of Prolog programs, then the
predicate language considered contains also non-monotonic predicates like var or share. For this
reason a careful analysis of some intermediate steps of the unification process is necessary. This
yelds to a non-trivial system of syntactic rules to compute sp.lf.P. The soundness, completeness
and termination of the system is proved. The calculus can be used to infer run-time properties of
logic programs. In Cousot and Cousot’s original paper on abstract interpretation of imperative
programs [2] everything was couched in terms of predicate transformers. Predicate transformers
were used to define deductive semantics. Deductive semantics was used to design approximate
program analysis frameworks. To propose a similar approach for logic programs we need the
correspondent of program point for a logic program. In [7] Nilsson introduced a scheme for
inferring run-time properties of logic programs based on a semantic description of logic programs
that uses the concept of program point. We will show that the predicate transformer sp can be
easily cast in such a theory.

The rest of the paper is organized as follows. The next section contains some preliminaries
and introduces the predicate transformer sp.l{. Section 3 introduces the transformation rules
to compute sp.U.P. In section 4 the soundness, completeness and termination of the calculus
are proved. In section 5 we illustrate the use of the calculus for defining a forward semantics of
Prolog programs.

2 Unification as Predicate Transformer

The computational meaning of unification in Prolog relies on the concept of substitution. A

substitution is a mapping from variables to terms such that dom(¥) def {v | v¥ # v} is finite.
The notion of unification can be given w.r.t. a set of sets of terms [4] or w.r.t. a set of equations
[6]. We choose the first approach. Let U be a finite set of sets of terms. A wunifier for U is a
substitution ¥ such that every set in U/, under the application of ¥, becomes a singleton, i.e.
VS eU Vi, t' € S (t9 = t'9). A most general unifier for U is a unifier ¥ such that for every unifier
o there exists a substitution v such that ¥y = o. The set of idempotent most general unifiers
for U will be denoted by mgu(U). The operational meaning of U can be described as the partial
function Aa.au, where « is a substitution and pu is a fixed mgu in mgu(Uca); clearly Aa.ap is
undefined if mgu(Ua) = 0. We study unification by means of the predicate transformer sp.U
(where sp stands for strongest postcondition [5]) with the following operational meaning.

Definition 2.1 sp.{.P is true in precisely those substitutions au such that Pa is true and
p € mgu(Ua).

The choice to represent the unification process as set of sets of terms is motivated by the following
observations:
mgu({{f(t1,...,tn), f(S1,---,8n)}}) = mgu({{t1,s1},...,{tn,sn}}) and
mgu({S1,...,Sn}) = mgu({S1 U Sa, S3,...,Sp}) if Sy NSy # 0.
These two equalities will be used in our calculus for sp./ and they clearly lead to consider sets
of sets of terms. For sake of clarity, we use double square brackets to enclose sets of terms
S = [t1,...,tm] and braces to enclose sets of sets of terms U = {S1,...,S,}.

We call a predicate P monotonic if it is (semantically) invariant under instantia-
tion, that is for all substitutions «,3 if Pa is true then Paf is true. Now let U be

{It1, - o 1o Ie ..o ¢ 1} we denote by U the predicate ((t1 = ... =tL) A... A (] =
...=11"")). Then the following lemma holds.

Lemma 2.2 Let P be a monotonic predicate. Then P AU 1is equivalent to sp.4.P.

Proof. Let a be s.t. Pa is true and let 4 € mgu(Ua). Then Uap is true and from P monotonic
it follows that Payu is true.

Viceversa let a be s.t. (P A U)a is true. Then Pa is true and € € mgu(Ua). So by Definition
2.1 (spU.P)a is true. [

Lemma 2.2 allows to compute sp.l{.P when P is a monotonic predicate.

2.1 The Language

However we are interested also in properties that describe the structure of terms, like var or
—ground, since we want to use the predicate transformer to infer run-time properties of logic
programs. Thus we introduce the language A defined on the alphabet containing the following
classes of symbols:

- a countable set VAR of variables;

-aset FUN of functions;

-aset PRED = PredU {free,var,~ground, share, ~share,inst} of predicate symbols where
Pred is a finite set of monotonic predicate symbols s.t. =, ground, —wvar, <, <, tnvar are in
Pred;

- the connectives A and V;

- the existential quantifier 3;

- (‘and) as punctuation symbols.

Variables will be normally denoted by the letters u, v, w, z,y, z (possibly subscripted or su-
perscripted) and functions will be normally denoted by the letters f, g, h (possibly subscripted).
Let TERM be the set of terms built on FUN and VAR. Terms will be normally denoted by the
letters r, s, t (possibly subscripted or superscripted). Given a term ¢, the set vars(t) C VAR de-

notes the set of variables that occur in ¢. We call structured term a term of the form f(¢1,...,tm),
where m > 1; we call proper subterm of t every subterm of ¢ but ¢t. We assume that sequences
are contained in A. We denote by ¢ a sequence t1,...,t; and we write ¢y or (t1,...,t) if

respectively the size or the elements of the sequence are relevant. Moreover we indicate with xp
the sequence of terms obtained applying the substitution p to every element of the sequence z.
We call atom a predicate of the form p(t1,...,t,) where p is a predicate symbol of arity n and
t1,...,tn are terms. When ambiguity does not arise we write r(t1,...,tm,) as a shorthand for
the predicate r(t1) A ... Ar(ty), where r is a predicate symbol of arity 1.

The truth value of a predicate P € A w.r.t. a substitution « s.t. vars(P) C dom(«) is defined
inductively on the structure of P, and the meaning of an atom is specified as follows:

- war(t)a is true iff ta g VAR;

- ground(t)a is true iff vars(ta) = 0;

- (t1 = to)a is true iff ;0 = tor syntactically;

- (s X t)ais true iff s« is a subterm of ta;

- (s < t)ais true iff s« is a proper subterm of to;

- invar(s, t)a is true iff wvars(sa) C vars(ta);

- free(z)a is true iff za € VAR and za & vars(ya) for all y € dom(a) s.t. y # ;

- var(z)a is true iff za € VAR,

- aground(t)a is true iff wvars(ta) # 0;

- share(s,t)a is true iff wvars(sa) Nvars(ta) # 0;
- mshare(s,t)a is true iff wvars(sa) Nvars(ta) = 0;

- inst(x,r1,79,y)a is true iff ria is the sequence (z1,...,x,), with z; € vars(za) and
z; ¢ wvars(ya) for i € [1,m], rea is the sequence (t1,...,tm) and {z1/t1,...,Tm/tm} €
mgu({[za, ya]}).

Notice that x and y in inst(x,r1,79,y) represent two terms the second of which is an instance
of the first. Thus the predicate inst expresses a special case of the unification.

Given two predicates P and @, we write P = @ to indicate that P and @) are semantically equiv-
alent. We can assume that the predicates TRU F (the predicate true w.r.t. all substitutions) and
FALSFE (the predicate false w.r.t. all substitutions) are in A, since TRUE = (var(z)V-war(z))
and FALSFE = (var(z) A —var(z)).

Predicates in A are not in general monotonic, since all atoms built on predicate symbols not
in Pred are non-monotonic by definition. So Lemma 2.2 is not sufficient to characterize sp.l/:
consider for instance the unification {[z,a]} and the predicate var(z). Thus a careful analysis
of the effect of the unification process on non-monotonic predicates is necessary. The fact that
the connective — is not in our language guarantees that atoms built on predicate symbols not in
Pred are the only non-monotonic atoms of the language; this allows a case analysis of the effect
of unification on non-monotonic predicates.

2.2 Some Useful Assumptions

The following assumptions will be used to (relatively) simplify the form of the rules for sp.l
that will be introduced in the next section.

Assumption 1 Predicates are of the form 3z P where P doesn’t contain any quantifier, it is in
disjunctive normal form (i.e. it is a disjunction of conjunctions of atoms) and the equalities that
occur in each conjunct are denoted by a set of equations in solved form.

This assumption is not restrictive, since it is well known that a predicate can be transformed in
an equivalent one satisfying the first two conditions, while the third condition can be obtained
applying for instance the algorithm in [6] to compute the solved form of a set of equations,
otherwise the predicate is equivalent to FALSFE.

Assumption 2 Atoms with predicate symbol free, var, —war, ground, —ground, share,
—share, tnvar have variables as arguments.

This assumption is not restrictive, since we can transform a predicate of A in an equivalent one
satisfying this property, by repeatedly applying the following equivalences:

- free(f(tm))) = FALSE,

var(f(tm)) = FALSE,

—wvar(f(t(m))) = TRUE,

- ground(f(t(m))) = (ground(t1) A ... A ground(t,)),

- aground(f(t(m))) = (mground(t1) V...V ~ground(tm)),

share(f(t(m)),t) = (share(t1,t) V ...V share(tm,t)),
share(m f())) = (share(z, t1) ...V share(z,tn)),

—share(f (t(m)) (—share(t1,t) A ... A —share(tm,t)),
ﬂshare(x f(t(m))) = (—share(z,t1) A ... A —share(z, t,)),

- invar (f ((m), t) = (invar(ts, t) A... Ainvar(tm, t)),
invar(z, f (L)) = (invar(z, t1) V... Vinvar(z, tn)).

Assumption 3 For any formula sp./.P the predicate P does not contain (existential) quanti-
fiers.

This assumption is not restrictive as the following lemma shows.

Lemma 2.3 If the variable does not occur in U then spld.3xP is equivalent to Iz (sp.U.P)
w.r.t. Definition 2.1.

Proof. Since z doesn’t occur in U then the truth value of 3z(sp.d.P)S and of (sp.U.3zP)s
does not depend on z3. Thus we can assume without loss of generality x ¢ dom(3). Then
(spU.JxP)S is true iff there exist a and p s.t. = & dom(a), © & dom(u), u € mgula),
(3zP)a is true and 8 = ap iff there exist o, p and ¢ s.t. = & dom(a), © ¢ dom(p), u €
mgu(la), P(aU{z/t})istrue and 8 = ap iff thereexist o, pandts.t. u € mgu(lU(aU{z/t})),
P(aU{z/t}) is true and (BU {z/t}) = (a U {z/t})p iff (spU.P)(BU {z/t}) is true iff
(Jzsp.U.P)L is true. [

3 A Calculus for sp.U

The following conditions on P and U characterize the types of formulas which will specify the
scope of applicability of the rules for sp.U.P.

(i) P is a conjunction of atoms.

(ii) For each equation z =t in P, = does not occur in U.

(iii) For every x occurring in U either var(z) or —war(z) occurs in P.

(iv) For all distinct variables z occurring in & and y occurring in P either share(z,y) or
—share(z,y) occurs in P.

(v) U ={51,...,S,} contains disjoint sets, i.e. S;N.S; =0 for 7 # j.

(vi) Each set in U contains more than one element.

(vii) Each set in U contains at most one structured element f(vq,...,v,,) and in such a case
free(vi),..., free(vy,) occur in P.

(viii) Every element x of a set S € U is s.t. free(z) occurs in P if x occurs in the structured
element of another set in U and —wvar(z) occurs in P otherwise. Moreover, each set that contains
a structured element also contains an element y s.t. free(y) occurs in P. (Hence y occurs in
the structured element of another set).

We introduce 3 types of formulas sp.ld.P as follows.

type 1: those which satisfy conditions (i)—(iii).
type 2: those which satisfy conditions (i)—(vii).
type 3: those which satisfy conditions (i)—(viii).

Each type of formula characterizes a simpler form of P and /. The final form will be a disjunction
of formulas in the so called reduced form.

A formula sp.U.P is in reduced form if P is a conjunction of atoms, for each equation x = ¢
in P x does not occur in U, U contains only disjoint sets of two or more variables, for all z
occurring in U both —war(z) and —ground(z) occur in P and for all z occurring in &/ and y
occurring in P either share(z,y) or ~share(z,y) occurs in P.

We are now ready to present the rules for sp.l{.P. The notation E¥ will be used to indicate the
formula obtained by replacing the occurrences of x in E with t.

-If P=P, V...V P, then
spU.P=spU.P, V...V spl.P, OR

- If z occurs in U and neither var(z) nor —wvar(z) occurs in P then

spU.P = spU.(P ANvar(z)) V spUd.(P A —war(zx)) VARI1

- If P is a conjunction of atoms and x = ¢ occurs in P then:

spU.P = spUf.P EQ
-spU.FALSE = FALSE F
The following eight rules may be applied only to type 1 formulas.

- If occurs in U and y occurs in P and neither share(z,y) nor ~share(z,y) occurs in P then

spl.P = spU.(P A share(z,y)) V splU.(P A —share(z,y)) SH1

-IfU = {[fi(s), fa(2),...], S2,...,Sn} and fi # fo, then
spU.P = FALSE MIS1

-IfU = {[z,s,1], S2,...,Sn} and either x € vars(s) or the conjunct z < s occurs in P then
spU.P=FALSE MIS2

-IfU = {[[f(§%k)),...,f(§%)]],5’2, ..., Sy} then
spd.P = spU'.P STR1

where U’ = {[[é‘g'm)]]je[l,kb 527 cee 7Sn}

-IfU = {[[f(g%k)), e, f(ﬁzk))7mi+17 ey Tm],S2,...,S,} with i < m and either i > 2 or at least

% is not a variable or at least one s’ is a variable such that —wvar(s}) occurs in P, then

spU.P = Elg(k)(sp.Z/{'.P') STR2

one s

where U’ = {[[f(g(k'))7 Litly--- 7$m]]7 [[yj7§_§'i)]]j6[1,k]7 S27 cee 7Sn}7
P'=PA free(g(k)) and Yy e fresh variables.
-IfU = {l[t,t(m)]], |[t,§(m/)]], S3,... ,Sn} then
spU.P = spd'.P SH2
where U’ = {[[t,t(m),g(m,)]], S3, e ,Sn}

TP U = {[t], Ss, ..., S} then
spU.P = spld'.P SI
where U' = {Ss,...,Sn}

The following two rules may be applied only to type 2 formulas.

- If U = {[t, z(m)];, S2, - - -, Sn} where z,, does not occur in the structured term of any set of U,
var(zm,) and —share(zm,y) occurs in P for all y € vars(t), then
spU.P =32 spU.R VAR2

where U’ = {[[t,g(m_l)]], SQ, ey Sn},
R = (A, inst(zp, (xmp), (t), 2) A P'Azpy =1t),
z = (z € vars(P) | P = share(z,znm)), 2 = zp is a variant of z disjoint from P and P' = PZ.

- U ={[f(s5))s Zem)], S2,- -, Sn} and —war(z1),...,~var(z,) occur in P then
spU.P =3y spU' (P ANz = f(g}k)) Ao Az = f(yG)) VARS3

where U’ = {[[si,gz(-m)]lie[l,k], So,...,8,} and y is the sequence y of fresh variables.

1 m
k) 2 Y (k)
The following three rules may be applied only to type 3 formulas.

- If there is a set S € U/ that contains a structured term then

spU.P = FALSE MIS3

- If z occurs in U and neither ground(z) nor —~ground(z) occurs in P then

sphU.P = spU.(P A ground(z)) V spU.(P A ~ground(z)) GR1

-IfU = {[[g(m)]], Say...,Sn} and ground(z,,) occurs in P then
spU.P =32, 25,y spU'.R GR2

where U’ = {Ss,...,Sn},

z = (z € vars(P) | P = share(x,z;) for some i € [1,m — 1]}, £’ = zp is a variant of z disjoint
from P, z, and y, are the sequences of fresh variables z, and y, with z € z, P = Pf and R is
the predicate N

Neea(inSUTP, 22, Yus T) Nijp= share(z,e:) VAT (22, 22;) Nycvars(p) 78hare(2, ¥))
AP ' ANx1=...=z,.

To a formula in reduced form we can apply the following rule.

- If sp.U.P is in reduced form, where U = {[[g%ml)]], cey [[g?mn)]]}, then

spU.P =32, 25,y (RATU) RF

where U is the predicate (z7 =... =zl)A...A(z] =... =2},),
z = (z € vars(P) | P = share(z,z]) for some i € [1,m;],j € [1,n]), ' = zp is a variant of z
disjoint from P, z, and y, are the sequences of fresh variables 2z, and y, with z € z, P' = P

and R = (A\,¢, inst(zp, 2z, Yz,) A P'). -

The previous rules are natural abstractions of the relative unification step except rules
MIS3,VAR2, GR2 and RF. Rule MIS3 relies on the condition that the formula is of type 3
and U contains at least a set with a structured element. In this case it can be proven that U/
has no unifier.

Rules VAR2, GR2 and RF take into account how sharing among variables can propagate the
bindings produced by the considered transformation and how the transformations affect the
truth of the non-monotonic atoms. To keep track of the way the predicate is modified suitable
variables are renamed with fresh variables existentially quantified and suitable predicates are
introduced to specify the link among the original variables and the renamed ones.

All the rules are syntactic. Thus the set of rules provides a (nondeterministic) algorithm. We will
see in the following section that this algorithm terminates and computes sp.lf.P. We conclude
this section with some examples.

Example 3.1 Let P = free(z,y) and U = {[f(x),y],[9(y),z]}. Since spU.P is of type 3,
then by rule MIS3 it is equivalent to FALSE. In fact an occur check does occur.

Example 3.2 Let P = (free(z,y) A —share(z,y)) and U = {[f(y),z]}. Since spU.P is of
type 2, then we can apply rule VAR2. We obtain
3z (spA1f ()} (P A inst (2!, (2'), (f(y)), z) Az = f(y))).
By rules SI and RF we obtain
3! (Py Ainst(a!, (2'), (f(y)),2) Az = f(y)),
which is equivalent to (free(y) Az = f(y)).

Example 3.3 Let P = (ground(y) A —wvar(z) A ~ground(z) A =share(z,y)) and U = {[z,y]}.
Since sp.U.P is of type 3, then we can apply rule GR2. We obtain
Az', 22, Yz (sp{ }. (PEANinst(2', 2z, Yo,) Ninvar(zy, 2z) Anshare(zg,) Amshare(zy, y) Ae = y)).
By rule RF we obtain

3z, 24, Yo (P5 N inst(z', 2z, Yo, ©) A invar(zg, 2z) A “share(zg,) A mshare(zg, y) Az =y)
which is equivalent to (ground(y) A ~war(y) Ay = x).

Example 3.4 Let P = (—war(z,y) A nground(z,y) A share(z,y)) and U = {[z,y]}. Since
spU.P is in reduced form , then we can apply rule RF. We obtain

32y, 2a, Yo, 2y Yy (P N inst(@', 22, Y, @) NinSH(T', 225 Yoy y) NiNSEY's 24, Yy) AT =),
which is equivalent to (z = y A ~war(z,y)), if CON contains at least a function of arity greater
than one and a constant; otherwise it is equivalent to (z = y A —war(z,y) A “ground(z, y)).

4 Soundness and Completeness of the Calculus

We indicate by H,, the set of rules but RF. We first show that all the rules are equivalences.
Then we show that a formula sp.l/.P can be reduced in a finite number of steps to a disjunction
of formulas in reduced form, by applying rules from H,,. Finally rule RF applied to each
disjunct will give the desired predicate (of A) relative to sp.U.P.

The following properties of most general unifiers are useful:

1) Let U = {[t(m)], S2,- - - Su}- If B € mgu({[t]}) and p € mgu(UB) then pU ' € mgu(Ud),
where ;u'l = (/Blu’)|dom(,8)

2) mgu({[t], S2, .- Sn}) = mgu({Ss, ... Sp}).

Theorem 4.1 All rules are equivalences (with respect to Definition 2.1)

Proof.
OR Because Pa is true if and only if P;o is true for at least one j = 1,...,n.

VARI1 Because Pa is true if and only if either (P Avar(z))a is true or (P A—war(z))a is true.
EQ Because, if z =t occurs in P, then za = ta and so mgu(Ufa) = mgu(a).
F There is no « that satisfy FALSE.

SH1 Because P is true if and only if either (P A share(z,y))a is true or (P A =share(z,y))a
is true.

MIS1,MIS2 There is no p in mgu(Ua), for all a.
STR1 Because for all q,

mgu({[[f(ﬁ%k)>7 cee 7f(§?kb;))]]7 S2a IR Sﬂ}a)

is equal to
mgu({llégm)]]]=1,,k7 ‘927 ceey S’n,}a>-

STR2 Let

P'=PA free(y1) A... A free(y),
U= {l[f(ﬁék))a SRR f(ﬁzk))7$i+17 cee ’.mm]]7527 e -:Sn}a
U = {I[f(g(k));mz-o-l; N 7$m]]a |ij7§‘§2)]]j:1,...,k7 S27 R aSn}-

Let « be such that Pa is true and let u € mgu(Ua). Let ug,...,ux be fresh variables and let
o/, p' be such that

, u; if x=y;forajell k]
ra = .
o otherwise;

ol = { sé-a,u, if v =u; foraje[l,k],
vl otherwise.

Then P'a/ is true and y' € mgu(U'a’). Thus (spU'.P")a/u' is true and, since zo/p’ = zap for

all z in vars(P), then (Jy1,...,ypspd'.Pau is true.

Viceversa, let o/ be such that P'a’ is true and let i/ € mgu(U’a’). Then y;a’ is a free variable,
say u;, for all i € [1,k]. Let a be equal to o/ with the domain restricted to dom(a’)\{g(k)}
and let u be equal to u’ with the domain restricted to dom(u')\{uy}. Then Pa is true and
p € mgu(la). Thus (spUd.P)ap is true and, since zap = zd/y’ for all z in vars(P), then
(spU.P)a/ i is true.

SH2 Because for all a
mgu({[[t,t(m), §(m’)]]7 53, ey Sn}Oé)

is equal to
mgu({[t, t(m)]], [[t, §(m’)]]7 S3, ceey Sn}a)

SI Because of property 2).

VAR2 Let a be such that Pa is true and let u € mgu(Ua). Let o be such that

to if £ =z,

za' ={ 2o if z = 2p,
TmQ .

(za)im® otherwise.

z

Let A" be an atom in P'. Then A" = A7, with A atom in P. If A’ is monotonic then A’a’ is an
instance of Aa. Otherwise A'a’ = Aa. Thus in both cases A'a’ is true. From ta’ = ta it follows
that inst(zp, (xmp), (t), z)a’ and (z., = t)a’ are both true. Then Ra/ is true. Now let u' be s.t.
p = U{z,a/tap’}. Then from U'a’ = (Ua)i e it follows by property 1) that u' € mgu(U'a’).
Thus (sp.U'.R)d'y is true and, since zap = za/p' for all z in P, then (32’ spU'.R)au is true.
Viceversa let o be such that Ra’ is true and let p’ € mgu(U'a’). Let a be such that

!

zpa! if xin z,
T = .
To otherwise.

Then Pa = P'd is true. Let pu = p' U {za/tau'}. By inst(zp, (xmp), (t), z)a’ true for all z in
z it follows that U'a’ = (Ua)i". Then by property 1) u € mgu(Ua). Thus (sp.U.P)ap is true
and, since o'y’ = ta/ ' = tap’ = rpmap, then (spU.P)ay' is true.

VARS3 Let

Z/{:{l[f(ﬁ(k));m%---;wm]ly‘S’?;---;Sn}y
ul = {|[3iayi27 e 7y;(n]]i6[1,k]7327 o 7Sn}7
P' =P Axs =f(y%k))/\.../\xm=f(gz’;)).

Let a be such that Pa is true and let p € mgu(Ua). From P = —war(z;) it follows that z;a is
a structured term of the form f (L%k)) for suitable terms ¢{,...,t] (otherwise mgu(Ua) would be

empty).
Let o/ be such that

vol — { t ifmzyg for j € [2,m] and ¢ € [1, k],
za otherwise

Then P'a’ is true and pu € mgu(U'a’) by construction. Thus (sp.U'.P")a’u is true and, since
za! = za for all z occurring in P, then (Jysp.U'.P")apu is true.
Viceversa, let o/ be such that P'a/ is true and let u' € mgu(U'a’). Then s;o'y’ = y2a/p/ = ... =
y™a/u for i € [1, k.

Then Pa/ is true and since z;a'p' = f(y1,...,yx)a’y for all j € [2,m], then 1’ € mguUa).
So (spU.P)a'y/ is true.

MIS3 By hypothesis the formula is of type 3 and U contains at least a set with a structured

element. Then by condition (vii) each set that contains a structured element f(yi,...,yx) also
contains at least a variable x that occurs in the structured element of another set. In such a
situation we can eventually extract from ¢/ a subset {S,...,S;} of sets such that

Sl = [[fl(...,xt,...),ml,...]]
SQ = [[fg(...,l‘l,...),x‘Q,...]]

St = |[ft(R T I .),.’L't, ..]]
Clearly {S1,...,S:}a has no unifier.

10

GR1 Immediate since P« is true if and only if (P A ground(z))a is true or (P A =ground(z))a
is true.

GR2 Let o and p be such that Pa is true and p € mguUa), let p; = pjyars(za)- From
ground(zm)a true it follows that z;au = x,a for i € [1,m — 1]. Let o/ be s.t.

To if w =xp with z in z,
T if w=x; for ¢ € [1,mq],
wa' ={ yl...ym! if w = 2z, with z in z,

(y'...y™Hu ifw=y, with z in z,
(wa)py ... hm—1 otherwise.

where y' is the sequence of variables in vars(za) N vars(z;a) for i € [1,m — 1].

Let A’ be an atom of P'. Then A’ = A%, with A atom in P. If A" is monotonic then A'a’ is an
instance of Aa. If A’ is non-monotonic then A’a’ = Aa. In both cases A'a’ is true. Moreover
(x1 = ... = zp)d/ is true because o = o = x;0 for all ¢ € [1,m — 1], -~share(z,,x)d
is true because all variables in z,a' occur in z;a for some i € [1,m — 1] and za/ is obtained
replacing the variables in all z;a with ground terms, inst(zp, 2z, ¥z, x)a/ is true because zpa’ =
T, o = (ma)zzgi and —share(zz, z)d’ true imply {z;a'/y.a'} € mgu({[zpd/,za']}); finally
invar(2z, (Zey s -+ + 5 2a,,_ ;)) i8 true by construction. Thus Re' is true. Now let 1’ = fijyars(urrar)-
We have that pg ... pum—1 is in mgu({[z1,...,zm]} a), range(us ... ttm—1) = 0 because z,,« is
ground, U'e/ =U'ap; ... tm—1. Then p=p' U ps ... pm—1 and by properties 1) and 2) ' is in
mgu(U'a’). Then (spd'.R)a’y is true and, since xza/u' = zap for all x occurring in P, then
(3z, 2z, Yz sp-U.R)ap is true.

Viceversa let o be such that Ra' is true and let p’ € mgu(U'a’). Let a be s.t.

za! otherwise.

P

xa:{ zpo' if xin gz,
Then Pa = P'a’ is true. Let u = p' UG with 8 = {(22,0'/yz,0/)icfim-1)}- From
inst(zp, 2z, Yo,)0, 7share(zs,, r)o' and invar(zz, (Ze; s - - - 5 Za,,_ ;))& true it follows that za' =
zaf for all z € z. If ¢ ¢ « then from -share(zy,x)a’ true for all y it follows that
za' = (zd')B = zaf. Then za' = zaf for all z occurring in P. Then U'a/ = U'a3. From
T = ... =z, true, 0/ ground and inst(x;p, 2z, Yz, i)' true for all i € [1,m — 1] it fol-
lows that 8 € mgu({[z1,...,Zm]}a). Then by properties 1) and 2) it follows that u € mgu(Ua).
Thus (spU.P)ap is true and, since za'y’ = (za)Bu' = zap for all x occurring in P, then
(spU.P)a/ i is true.

RF Let o and p be such that Pa is true, u € mgu(Ua). Let o/ be s.t.

ra if w=zp with z in gz,
/ way if w occurs in P,
wa' = . . .
if w = 2z, with z in z,
I if w =y, with z in z.

S

where y is the sequence of variables occurring in dom(pjvars(za)).- Now Ud’ is true because

wlo! = zlop for every i € [1,m;], j € [1,n]. Let A’ be an atom of P'. Then A’ = A7, with
A atom in P. If A’ is monotonic then A’a’ is an instance of Aa. If A’ is non-monotonic then
A'a) = Aa. In both cases A'a’ is true. Moreover inst(zp, 2z, Yy,)o/ is true because zpa’ = za,

xza! = zap and the substitution relative to the two sequences z,a' and y,a’ is equal to Blvars(za)-

11

Since p is idempotent by hypothesis, then pjyars(za) € mgu({[za, zau]}). Then (R A U)d/ is
true and, since zo/ = zapu for every x occurring in P, then (3z', 25, y.(R A U))au is true.
Viceversa let o be s.t. (RAU)d is true. Let « be s.t.

/

zpa' if rin z,
T = 3
To otherwise.

Then Pa= P'a’ is true. Let u be the substitution relative to the sequences z_;a', y ;' for all

i €[1,m;], j € [1,n]. Then p € mgu(Ua). Thus (sp.U.P)ap is true and, since zap = cpa'p =
za for every x that occurs in P, then (sp.ld.P)cd/ is true.]

Theorem 4.2 The system H, 1s terminating.

Proof.

We show that no proof tree built using H,, has an infinite branch. Rules F, MIS1, MIS2
and MIS3 have a predicate as right hand side, so they cannot belong to an infinite branch. To
prove that only finitely many applications of the remaining rules are allowed, consider the tuple

7 = (leq, comp, funct,elem, disj, unvar, unshare, unground)

of natural numbers with the lexicographic order. A structured term f(t¢1,...,t,) will be called
compound if either some t; is not a variable or the variables ¢1,...,t, are not distinct. Then

leq denotes the number of variables in U/ that occur as left hand side of an equation in P.
comp denotes the number of occurences of compound subterms of terms in ¢. Thus

comp = Y7, S comp(t])

j 0 if tf not compound ;
comp(t]) = m e
1+ Y35k, comp(sy) if t] = f(s1,...,8m) compound
functdenotes the number of occurences of function symbols in ¢/. Thus
funct =377, POFEA funct(tz)

0 if t] € VAR;
14 Y, funct(sy) ift] = f(s1,.-.,5m)
elem denotes the total number of elements in the sets of ¢/. Thus

elem = 37_; |S;]

where |S;| indicates the cardinality of the set S;.
disj denotes the number of disjuncts in the disjunctive normal form of the precondition P.
unvar denotes the number of variables z € vars(P) such that neither P = var(z) nor P =
—war(z).
unshare denotes the number of variables z € vars(P) such that neither P = share(z,y) nor
P = —share(z,y) for some distinct variable y € vars(U).
unground denotes the number of variables z € vars(P) such that neither P = ground(z) nor
P = —ground(z).

funct(t)) = {

Let us list the remaing rules to show that their application decreases the value of 7.
EQ decreases leq.
OR decreases disj, does not change leq, comp, funct and elem.

12

SH1 decreases unshare, does not change unvar, leq, elem, funct, comp and does not
increase disj (disj may decrease if a disjunct contains ~share(z,y) or share(z,y)).

VAR1 decreases unvar, does not change leq, elem, funct, comp and does not increase disj
(disj may decrease if a disjunct contains —war(z) or var(x)).

STR1 decreases funct and does not increase leq, comp (comp may decrease if some s; is a
structured term).

STR?2 decreases comp or does not change leq, comp and decreases funct.

SH2 decreases elem, and does not increase leq, comp and funct (funct may decrease if ¢ is
a structured term, comp may decrease if ¢ is a compound term).

SI decrease elem, and does not increase leq, funct (funct may decrease if ¢ is a structured
term).

VAR2 decreases elem and does not change leq, funct and comp.

VARS3 decreases funct and does not change leq and comp.

GR1 decreases unground, does not change leq, comp, funct, elem, unshare, unvar and
does not increase disj (disj may decrease if a disjunct contains =ground(z) or ground(z)).

GR2 decreases elem and does not change leq, comp, funct.]

Theorem 4.3 Rules of Hsp transform spU.P in a (semantically unique) disjunction of formu-
las in reduced form.

Proof.

By Theorem 4.1 all transformations are equivalencies (w.r.t. Definition 2.1). By Theorem
4.2 there is a final form. Thus the final form is semantically unique. By contrapposition suppose
that the final form is not a disjunction of formulas in reduced form. Then if condition (i) is
not satisfied then rule OR can be applied; if condition (ii) is not satisfied then rule EQ can
be applied; if condition (iii) is not satisfied then rule VAR1 can be applied; if condition (iv) is
not satisfied then rule SH1 can be applied; if condition (v) is not satisfied then rule SH2 can
be applied; if condition (vi) is not satisfied then rule SI can be applied; if one set contains a
structured term then either rule STR1 or rule STR2 can be applied or the set contains only
one structured term that is a flat term: in such a case if the formula is not of type 3 then rule
VAR2 or rule VARS3 can be applied, otherwise rule MIS3 can be applied. If for a variable z
occurring in U var(z) occurs in P then rule MIS2 or VAR2 can be applied. Finally if, for a
variable z occurring in U, ground(z) occurs in P then rule GR1 or GR2 can be applied.]

Corollary 4.4 sp is a sound and complete calculus for sp.U.

5 Applications

5.1 A Forward Semantics for Logic Programs

Predicate transformers are related to the core of abstract interpretation of imperative programs.
In [2] predicate transformers are used to define deductive semantics. Deductive semantics is
used to design approximate program analysis frameworks. To propose a similar approach in the
setting of logic programming we need the correspondent of program point for a logic program.
In [7] Nilsson introduced a scheme for inferring run-time properties of logic programs based on
a semantic description of logic programs that uses the concept of program point. The predicate
transformer sp can be easily cast in such a theory. A clause of a logic program P is interpreted as
a sequence of procedure calls. To each call A there corresponds a calling point A and a success

13

point As. The leftmost and rightmost points in the body of a clause C are called respectively
entry- and exit points of the clause and are indicated respectively by C and C,. Goals are
represented as elements of the set Cgoals := (Points x Env)*, where Points denotes the set
of program points of P and Env is the set of predicates .A. A transition system for P can be
defined through two state transition schemes that transform elements of Cgoals as follows.

(Co;R) y =y,
(eA;R) iy = ((6Co; TRUE) :: (Ae; R) :: y)T,

where A is a body atom, Co is a variant of a clause C of P s.t. vars({sA; R) :: y)Nvars(Co) = 0,
T = sp.A[A, head(Co)]}.(R A free(vars(Co))) # FALSE. We assume that the definition of &
in sp is generalized in the obvious way to atoms or terms. The application of a predicate R to
a C-goal is defined as follows:

(nil)R = R,

(&) =)R = (55T o B) 5 y R,

where T o R is (equivalent to) 7" A R, with 7" the strongest assertion (w.r.t. implication) s.t.
T — T and (T"AR) # FALSE. Notice that T'e R is defined when R is consistent. For instance
if T'=(z=yAvar(z)) and R = ground(y) then T e R = (z = y A ground(y)).

The previous transitions schemes are obtained from those in [7] by taking as enviroment Env
predicates instead of substitutions, by using the predicate transformer sp instead of the mgu
as operation in the transition and the operation e to model the application of a predicate to a
C-goal. From [7], to each program point 7 is associated a set ©; of states which specifies when
the program point becomes current. The set of states is defined as Cgoals x Cgoals, where the
first component describes the C-goal that invoked the clause containing point ¢ and the second
component is the C-goal when the point is current. The semantics of P is defined as the least
fixpoint of the system of equations relative to its program points. Every program point is either
the entry point of a clause or the success point of a body atom. Then it is sufficient to define
the meaning of entry- and success points. Let A ~ C indicate that A and a variant of the head
of the clause C' can be unified. Then:

0.0 = Uawc{(Gi; Gin1) | 3G((G; Gi) € ©,4 A Gy =€ G},
0.4, = Uaucl(Gitail(Gy)) | 3G:((G; Gi) € ©,4 A (G Gj) € Oc,)},

Example 5.1 Consider the following simple case of concatenation of two lists:

Cy : <1 append([a],[], 2)2-
Cy : append([H|L1], L2, [H|L3]) <3 append(L1, L2, L3)4.
Cy : append([], L, L) «s .

Here the program points are explicitely labelled by integers. The meaning of this program, when
append([a],[], z) is called with z free variable, can be given as least fixpoint of the following set
of equations, where we use the notation of [7].

©1 = {(nil ; («Co; free(z)) :: nil)},

02 = {(G;tail(G;)) | 3G:((G; Gi) € O1 A ((G4; Gj) € O4 V (Gi;Gj) € O5))},
O3 = {(Gi;Gi-H) | 3G((<G; Gi) €OV <G; Gi) € @3) NG, |=Cl Gi+1)},

04 = {(G; tail(G;)) | 3G:((G; Gi) € O3 A ((G45 G;) € O4 V(G5 Gj) € O5))},
O = {(Gz;GH—l) | 3G((<G, Gz) €06,V <G, Gl) € @3) NG, |=02 Gi+1)}.

Notice that in this case the fixpoint can be computed in finite time since the program
terminates. We first calculate ©®3. We need to compute

14

sp.{[append([a],[], z), append([H|L1], L2,[H|L3])] }.(free(z, H, L1, L2, L3)).
By rule STR1, rule VAR2 applied to L2 and z, rules SI, STR1 and rule VAR2 applied to H
and L1 we obtain the predicate
T=(H=aNL1=[]ANL2=][]Az=[alL3] A free(L3)).
Since (free(z) T) = T then (4Cq; free(2)) :: nil |EC1 (4C1;T) =: (Coe; T) :: mill.
By rules STR1 and MIS1
sp.{[append(L1, L2, L3), append([H'|L1"], L2',[H'|L3)]}. (free(H',L1',L2',L3") A T)
is equivalent to FALSE. Hence
O3 = {{{sCo; free(z)) :: nil; (¢C1;T) :: (Coe; T) :: nil)}.
Consider now O5. We need to compute
sp.{[append([], L, L), append(L1, L2, L3)]}.(free(L) A T).
By rule STR1, rule EQ applied to L1 and L2, rule SI, rule SH2 applied to L and rule VAR2
applied to I and L3 we obtain the predicate
R=(H=aNLl1=1L2=L3=L=[]Az=]a]).
Since T'e R = R then
(¢C1;T) i {Cou; T) 2 mil =92 (4O R) :: (Che; R) :: (Coa; R) :: il
By rules STR1 and MIS1

sp-{[append([a],[], 2), append([], L, L)]}.(free(L) A T)
is equivalent to FALSE. Hence

O5 = {((eC1;T) :: (Coe; T) :: nil; («Co; R) :: {(Cha; R) i (Coe; R) 2 mil) }.
Finally ©5 and ©4 can be easily calculated.
©2 = {(nil; (Coe; R) :: nil) };

04 = {{{«Co; free(z)) :: nil; (Cre; R) :: (Coe; R) :: mil)}.

FEvery set O; describes the states associated to the program point ¢. Thus for instance O3
specifies that the program point 3 becomes current only when the goal append([a],[], z) invokes
C with z free variable and in such a case H becomes equal to a, L1 and L2 become equal to
the empty list [] and L3 remains a free variable.

6 Conclusions

In this paper we proposed a formal characterization of unification by means of the predicate
transformer sp.l{. We introduced a calculus for sp.f and proved its soundness, completness and
termination. The properties considered include some non-monotonic predicates on the structure
of terms, like var, share and —ground. Non-monotonic predicates increase the complexity of
the calculus that otherwise, i.e. in case of monotonic predicates, would consist of one simple
rule.

The predicate transformer allows to define a forward semantics of logic programs that can be
used to design approximate program analysis framework in the style of those proposed by Cousot
and Cousot for imperative programs ([2]).

15

References

[1] P. Cousot, R. Cousot. Abstract Interpretation : a Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. Proceedings of the jth ACM
Symposium on Principles of Programming Languages, 238-251, 1977.

[2] P. Cousot, R. Cousot. Systematic Design of Program Analysis Frameworks. Proceedings of
the 6th ACM Symposium on Principles of Programming Languages, 269-282, 1979.

[3] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[4] E. Eder. Properties of Substitutions and Unifications. Journal of Symbolic Computation,
1: 31-46, 1985.

[5] R.W. Floyd. Assigning Meanings to Programs. Proc. Symp. Appl. Math., American Math.
Society, Providence, Rhode Island, 19: 15-32, 1967.

[6] J-L. Lassez, M.J. Maher, K. Marriott. Unification revisited. Fundations of Logic and
Functional Programming, LNCS 306, 1987.

[7] Ulf Nilsson. Systematic Semantics Approximations of Logic Programs. Proceedings of
PLILP ’90, Springer-Verlag, 1990.

16

