161 research outputs found

    Evaluating growth and intrinsic water-use efficiency in hardwood and conifer mixed plantations

    Get PDF
    Abstract Key message Juglans, Fraxinus, Quercus and Pinus species seem to better maximize the carbon–water ratio providing useful indications on species selection for forestry plantations in areas with increasing drought risk. Abstract Maximizing carbon sequestration for a given water budget is extremely important in the contest of climate change in the Mediterranean region, which is characterized by increasing temperatures and rising water stress. This issue is fundamental for plantation stands, where limited water availability during the growing season reduces CO2 assimilation and, consequently, tree growth. In this study, the main objective was to investigate the performances in terms of carbon–water balance of conifer (Pinus halepensis and Cupressus sempervirens) and hardwood (Quercus robur, Juglans regia, Fraxinus excelsior and Populus spp.) mixed plantations. To this aim, we used carbon isotope signatures to evaluate the intrinsic water-use efficiency (iWUE) and the species-specific relationship between basal area increments (BAI) and iWUE. At the species level, the highest iWUE values corresponded to the lowest carbon accumulation in terms of BAI, for water-saving species such as Cupressus. Conversely, Populus had the lowest iWUE and the highest BAI accumulation. Juglans, Fraxinus, and Pinus showed the most balanced ratio between BAI and iWUE. Overall, no clear correlation of iWUE and BAI was evident within all species, except for Populus and Cupressus. Considering projected aridification and increased temperatures that will negatively impact the growth, our data suggest that Pinus, for conifers, and Quercus, Juglans, Fraxinus for hardwood species should be preferred when choosing species for forestry plantation, as they performed better in terms of BAI and iWUE ratio

    Variation in the access to deep soil water pools explains tree-to-tree differences in drought-triggered dieback of Mediterranean oaks

    Get PDF
    Individual differences in the access to deep soil water pools may explain the differential damage among coexisting, conspecific trees as a consequence of drought-induced dieback. We addressed this issue by comparing the responses to a severe drought of three Mediterranean oak species with different drought tolerance, Quercus pubescens L. and Quercus frainetto Ten., mainly thriving at xeric and mesic sites, respectively, and Quercus cerris L., which dominates at intermediate sites. For each species, we compared coexisting declining (D) and non-declining (ND) trees. The stable isotope composition (δ2H, δ18O) of xylem and soil water was used to infer a differential use of soil water sources. We also measured tree size and radial growth to quantify the long-term divergence of wood production between D and ND trees and non-structural carbohydrates (NSCs) in sapwood to evaluate if D trees presented lower NSC values. The ND trees had access to deeper soil water than D trees except in Q. frainetto, as indicated by significantly more depleted xylem water values. However, a strong δ2H offset between soil and xylem water isotopes observed in peak summer could suggest that both tree types were not physiologically active under extreme drought conditions. Alternative processes causing deuterium fractionation, however, could not be ruled out. Tree height and recent (last 15-25 years) growth rates in all species studied were lower in D than in ND trees by 22 and 44%, respectively. Lastly, there was not a consistent pattern of NSC sapwood concentration; in Q. pubescens, it was higher in ND trees while in Q. frainetto, the D trees were the ones exhibiting the higher NSC concentration. We conclude that the vulnerability to drought among conspecific Mediterranean oaks depends on the differential access to deep soil water pools, which may be related to differences in rooting depth, tree size and growth rate.This research was financially supported by the project OT4CLIMA (Italian Ministry of Education, University and Research (MIUR), Project N. ARS01_00405) ‘Advanced EO Technologies for studying climate change impacts on the environment’ and by the project ‘Alarm of forest mortality in Southern Italy’ (Gorgoglione Administration, Basilicata Region, Italy). M.C. was supported by the PhD program from the University of Basilicata (Italy). J.J.C. acknowledges funding by the project CGL2015-69186-C2-1-R project (Spanish Ministry of Economy). We acknowledge the E-OBS dataset from the EU-FP6 project UERRA (http://www.uerra.eu) and the data providers in the ECA&D project (https://www.ecad.eu)

    Modeling Climate Impacts on Tree Growth to Assess Tree Vulnerability to Drought During Forest Dieback

    Get PDF
    Forest dieback because of drought is a global phenomenon threatening particular tree populations. Particularly vulnerable stands are usually located in climatically stressing locations such as xeric sites subjected to seasonal drought. These tree populations show a pronounced loss of vitality, growth decline, and high mortality in response to extreme climate events such as heat waves and droughts. However, dieback events do not uniformly affect stands, with some trees showing higher symptoms of drought vulnerability than other neighboring conspecifics. In this study, we investigated if trees showing different vulnerabilities to dieback showed lower growth rates (Grs) and higher sensitivities to the climate in the past using dendroecology and the Vaganov-Shashkin (VS) process-based growth model. We studied two Pinus pinaster stands with contrasting Grs showing recent dieback in the Iberian System, north-eastern Spain. We compared coexisting declining (D) and non-declining (ND) trees with crown defoliation values above and below the 50% threshold, respectively. The mean growth rate was lower in D than in ND trees in the two stands. The two vigor classes showed a growth divergence prior to the dieback onset and different responsiveness to climate. The ND trees were more responsive to changes in spring water balance and soil moisture than D trees, indicating a loss of growth responsiveness to the climate in stressed trees. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. The presented comparisons indicated different stand vulnerabilities to drought contingent on-site conditions. Further research should investigate the role played by environmental conditions and individual features such as access to soil water or hydraulic traits and implement them in process-based growth models to better forecast dieback. Š Copyright Š 2021 Valeriano, Gazol, Colangelo, Gonzålez de AndrÊs and Camarero

    Climate, drought and hydrology drive narrow-leaved ash growth dynamics in southern European riparian forests

    Get PDF
    Abstract Mediterranean riparian forests are among the most threatened ecosystems in Europe. These ecosystems are exposed to land-use changes threatening their reduced habitat and by global warming, which is already triggering aridification processes. To assess the impact of these major threats, we studied the radial-growth responses to climate and drought in the narrow-leaved ash (Fraxinus angustifolia). This riparian tree species presents a relatively large ecological spectrum in its habitat preference in the Mediterranean Basin. We studied five sites arranged across a wide geographical range from Iberia to Italy, subjected to contrasting climatic conditions and located in hydrographic basins with different sizes and water regimes. We found diverse growth responses to climate and drought across the Mediterranean distribution range of the narrow-leaved ash at the individual and site levels. The growth of this species increased in response to wet and cool conditions in the prior winter and spring. The response to summer conditions was only observed in the coldest and wettest site (Ticino). Growth responded negatively to 2–14 month droughts that occurred from previous winter up to summer, particularly in the warmest-driest sites. Growth responses to drought peaked in the warmest-driest sites in terms of climate water balance (Odelouca, Donana), but not in the driest sites in terms of annual precipitation (Tudela, Zaragoza). Hydrological conditions also affected the narrow-leaved ash with high discharges in the prior winter and early spring enhancing wood production. Considering projected aridification and increased hydrological alteration, implying limited water supply in the Mediterranean region, climate warming will negatively impact productivity of narrow-leaved ash riparian forests. Further research should combine analyses of growth responses to climate and hydrology from tree to basin scales to disentangle their relative roles as drivers of productivity under different scenarios of climate and hydrological changes, in order to aid adaptive management of these key ecosystems

    Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System

    Get PDF
    Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments

    Drought-induced oak decline in the western mediterranean region: An overview on current evidences, mechanisms and management options to improve forest resilience

    Get PDF
    Increased forest vulnerability is being reflected as more widespread and severe drought-induced decline episodes. In particular, the Mediterranean area is revealing a high susceptibility to phenomena of loss in tree vitality across species. Within tree species, oaks (Quercus spp.) are experiencing extensive decline in many countries. However, in the wake of the so-called âoak decline phenomenonâ, the attention on these species has generally been limited. In this paper, we review the current available literature on oakdecline cases reported within the Mediterranean Basin, with particular remark for those occurred in Italy and Spain. More specifically our main aims were to: (i) provide an update on the patterns and mechanisms of decline by focusing on tree-ring and wood-anatomical variables; (ii) provide some hints for improving the resistance and resilience of oak stands experiencing decline. Our review reveals that drought is reported as the main driver triggering oak decline within the Mediterranean Basin, although other causes (i.e., increasing temperature, pathogens attack or excessive stand density) could exacerbate decline. In most reported cases, drought induced a substantial reduction of growth and changes in some wood anatomical properties. Indeed, growth decline prior death is also indicated as an early-warning signal of impending death. In ring-porous oak species, declining trees were often characterized by a very low production of latewood and a decrease in lumen area of the widest earlywood vessels, suggesting a potential reduction of hydraulic conductivity. Moreover, hydraulic dysfunction is reported as the main cause of decline. Finally, regarding management actions that should be considered for improving the resilience of declining stands and preserve the species-specific stand composition, it could be useful to shorten the rotation period of coppice stands or promoting their gradual conversion towards high forests, and favoring more drought-resistant species should also be considered. In addition, regeneration prior to regeneration cuts should be improved by anticipating seed dispersal or by planting oak seedlings obtained from local germoplasm

    Comparing Alzheimer’s and Parkinson’s diseases networks using graph communities structure

    Get PDF
    Background: Recent advances in large datasets analysis offer new insights to modern biology allowing system-level investigation of pathologies. Here we describe a novel computational method that exploits the ever-growing amount of "omics" data to shed light on Alzheimer's and Parkinson's diseases. Neurological disorders exhibit a huge number of molecular alterations due to a complex interplay between genetic and environmental factors. Classical reductionist approaches are focused on a few elements, providing a narrow overview of the etiopathogenic complexity of multifactorial diseases. On the other hand, high-throughput technologies allow the evaluation of many components of biological systems and their behaviors. Analysis of Parkinson's Disease (PD) and Alzheimer's Disease (AD) from a network perspective can highlight proteins or pathways common but differently represented that can be discriminating between the two pathological conditions, thus highlight similarities and differences. Results: In this work we propose a strategy that exploits network community structure identified with a state-of-the-art network community discovery algorithm called InfoMap, which takes advantage of information theory principles. We used two similarity measurements to quantify functional and topological similarities between the two pathologies. We built a Similarity Matrix to highlight similar communities and we analyzed statistically significant GO terms found in clustered areas of the matrix and in network communities. Our strategy allowed us to identify common known and unknown processes including DNA repair, RNA metabolism and glucose metabolism not detected with simple GO enrichment analysis. In particular, we were able to capture the connection between mitochondrial dysfunction and metabolism (glucose and glutamate/glutamine). Conclusions: This approach allows the identification of communities present in both pathologies which highlight common biological processes. Conversely, the identification of communities without any counterpart can be used to investigate processes that are characteristic of only one of the two pathologies. In general, the same strategy can be applied to compare any pair of biological networks

    A multi-proxy framework to detect insect defoliations in tree rings: a case study on pine processionary

    Get PDF
    Assessing and reconstructing the impacts of defoliation caused by insect herbivores on tree growth, carbon budget and water use, and differentiating these impacts from other stresses and disturbances such as droughts requires multi-proxy approaches. Here we present a methodological framework to pinpoint the impacts of pine processionary moth (Thaumetopoea pityocampa), a major winter-feeding defoliator, on tree cover (remote-sensing indices), radial growth and wood features (anatomy, density, lignin/carbohydrate ratio of cell walls, δ13C and δ18O of wood cellulose) of drought-prone pine (Pinus nigra) forests in north-eastern Spain. We compared host defoliated (D) and coexisting non-defoliated (ND) pines along with non-host oaks (Quercus faginea) following a strong insect outbreak occurring in 2016 at two climatically contrasting sites (cool-wet Huesca and warm-dry Teruel). Changes in tree-ring width and wood density were analyzed and their responses to climate variables (including a drought index) were compared between D and ND trees. The Normalized Difference Infrared Index showed reductions due to the outbreak of –47.3% and –55.6% in Huesca and Teruel, respectively. The D pines showed: a strong drop in growth (–96.3% on average), a reduction in tracheid lumen diameter (–35.0%) and lower lignin/carbohydrate ratios of tracheid cell-walls. Both pines and oaks showed synchronous growth reductions during dry years. In the wet Huesca site, lower wood δ13C values and a stronger coupling between δ13C and δ18O were observed in D as compared with ND pines. In the dry Teruel site, the minimum wood density of ND pines responded more negatively to spring drought than that of D pines. We argue that multi-proxy assessments that combine several variables have the potential to improve our ability to pinpoint and reconstruct insect outbreaks using tree-ring data

    Drought and Phytophthora Are Associated With the Decline of Oak Species in Southern Italy

    Get PDF
    Forest decline induced by climate change is a global phenomenon that affects many tree species, mainly in drought-prone areas as the Mediterranean region. In southern Italy, several oak species have shown decline symptoms and elevated mortality since the 2000s due to drought stress. However, it remains to be answered whether decline occurred alone or whether a pathogen was also involved. To this aim, we compared two coexisting oak species in a forest located in southern Italy which are assumed to be less (Quercus cerris) and more tolerant to drought (Quercus pubescens). We sampled fifteen couples of neighboring declining (D) and non-declining (ND) trees of both species. Wood cores were taken from all trees to perform dendrochronological analyses to detect the decline onset and link it to potential climatic drivers. Carbon isotope ratios (d13C) were analyzed in wood of the two vigor classes to compare their water-use efficiency. Phytophthora presence was also assessed in soil samples from ten D-ND couples of trees per species. The oak species most affected by drought-induced decline in terms of leaf shedding and mortality was Q. cerris, i.e., the least tolerant to drought. In both species, the D trees showed a reduced growth rate compared with ND trees from 2000 onward when drought and warming intensified. Q. pubescens showed higher growth sensitivity to precipitation, temperature and drought than Q. cerris. This sensitivity to climate was magnified in D trees whose growth decreased in response to warm and dry conditions during the prior winter and the late summer. The Q. pubescens D trees were more efficient in their water use than ND trees before the growth divergence between D and ND trees amplified. In the studied area, Phytophthora quercina was isolated from 40% of the sampled trees, and tended to be more frequent amongst ND than amongst D trees. Our data suggests that droughts and warm summer conditions triggered oak decline. The high prevalence of P. quercina in the studied area warrants further study as a potential predisposing factor
    • …
    corecore