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Forest dieback because of drought is a global phenomenon threatening particular tree
populations. Particularly vulnerable stands are usually located in climatically stressing
locations such as xeric sites subjected to seasonal drought. These tree populations
show a pronounced loss of vitality, growth decline, and high mortality in response to
extreme climate events such as heat waves and droughts. However, dieback events
do not uniformly affect stands, with some trees showing higher symptoms of drought
vulnerability than other neighboring conspecifics. In this study, we investigated if trees
showing different vulnerabilities to dieback showed lower growth rates (Grs) and higher
sensitivities to the climate in the past using dendroecology and the Vaganov-Shashkin
(VS) process-based growth model. We studied two Pinus pinaster stands with
contrasting Grs showing recent dieback in the Iberian System, north-eastern Spain. We
compared coexisting declining (D) and non-declining (ND) trees with crown defoliation
values above and below the 50% threshold, respectively. The mean growth rate was
lower in D than in ND trees in the two stands. The two vigor classes showed a growth
divergence prior to the dieback onset and different responsiveness to climate. The ND
trees were more responsive to changes in spring water balance and soil moisture than
D trees, indicating a loss of growth responsiveness to the climate in stressed trees.
Such an interaction between water availability and vigor was reflected by the VS-model
simulations, which provided evidence for the observation that growth was mainly limited
by low soil moisture in both sites. Such an interaction between water availability and
vigor was reflected by the VS-model simulations, which provided evidence for the
observation that growth was mainly limited by low soil moisture in both sites. The
presented comparisons indicated different stand vulnerabilities to drought contingent
on-site conditions. Further research should investigate the role played by environmental
conditions and individual features such as access to soil water or hydraulic traits and
implement them in process-based growth models to better forecast dieback.

Keywords: climate warming, dendroecology, die-off, growth decline, process-based growth model, Pinus
pinaster, tree rings
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INTRODUCTION

In the last decades, accelerated climate warming has caused
a reduction in soil moisture, thereby exacerbating drought
stress (Trenberth et al., 2014). Warmer and drier conditions
have led to hotter droughts, which negatively impact forests
worldwide and subsequently cause forest dieback (Allen et al.,
2010, 2015). Such a loss in tree vigor is characterized by crown
defoliation and increased mortality rates (Carnicer et al., 2011;
Camarero et al., 2015a). Therefore, there is a deep concern
for how the forecasted climate warming can expand forest
dieback events, thus leading to a weakening of the terrestrial
carbon sink and reducing the ability of forests to mitigate
climate change (Anderegg et al., 2013). Climate-driven forest
dieback is expected to increase in extent and severity in climate-
change hotspots such as the Mediterranean Basin region, where
seasonal changes in water availability limit tree growth and
forest productivity (Vicente-Serrano et al., 2014; Gazol et al.,
2018). In this region, climate models have forecasted increases
in the frequency and intensity of hotter droughts during the 21st
century (Giorgi and Lionello, 2008).

A better understanding of forest dieback processes is needed
to identify their climatic causes and ascertain why some
individuals are more vulnerable to drought stress than other
conspecific, neighboring individuals (McDowell et al., 2008,
2011). Specifically, individual vulnerability may be related to
site differences (e.g., soil depth) or intrinsic tree traits such as
growth rates (Grs) (Pedersen, 1998). Different studies have found
low Grs preceding dieback or tree death (Cailleret et al., 2017)
while trying to extract early-warning signals of those radial-
growth series (Camarero et al., 2015a; Cailleret et al., 2019). In
conifers, declining (D) trees often showed low Grs prior to tree
death, and this was associated with hydraulic failure caused by
drought and xylem embolism (Choat et al., 2012, 2018; Adams
et al., 2017). These results suggest that vulnerability to drought
depends on “legacy effects” due to the cumulative impacts of
climate stress on tree growth and vigor (Anderegg et al., 2015;
Kannenberg et al., 2020).

Long-term, radial growth data allowed the reconstruction of
how trees react to successive droughts and respond to such
through changes in vigor expressed by differential leaf shedding
rates, growth reduction, or tree death (Dobbertin, 2005). Thus,
in this study, we compared the Grs and responses to climate
variability of trees showing different needle shedding patterns.
To delve into the climatic constraints of radial growth dynamics,
we used the process-based Vaganov-Shashkin (VS) growth model
(VS model hereafter, Vaganov et al., 2006). We argued that
mechanistic rather than correlative approaches based on growth
models will allow a better understanding of drought-induced
dieback and the mortality process (Hendrik and Cailleret, 2017).
This mechanistic model determines daily radial Grs as a function
of daily climatic conditions by explicitly accounting for non-
linear relationships between climate and growth (Tychkov et al.,
2019). Relatively simple simulation frameworks such as those
provided by the VS model allow the understanding of the major
climatic constraints of growth, which is a key question in dieback
processes (Sánchez-Salguero et al., 2017, 2020).

In this study, we focused on Pinus pinaster, a Mediterranean
pine species which exhibits strong variability in response to
drought throughout its distribution range in the Western
Mediterranean Basin related to local climate conditions and
provenance variability (Bogino and Bravo, 2008; Vieira et al.,
2009, 2013; Sánchez-Salguero et al., 2018). We hypothesized that:
(i) declining (hereafter D) trees will show lower Grs than non-
declining (hereafter ND) trees prior to the dieback onset, (ii) D
trees will show a higher long-term vulnerability to drought than
ND trees, i.e., the radial growth of D trees will be more negatively
impacted by dry and warm conditions during the growing season,
and (iii) the more pronounced sensitivity of growth to drought
stress in D trees, inferred by using the VS model, will explain its
preferential dieback.

MATERIALS AND METHODS

Study Site
Two different forests (Orera, Miedes) were studied in the central
Iberian System, Aragón, north-eastern Spain (Table 1). These
are two natural P. pinaster Ait. Stands that were subjected
to light thinning in the past and now show recent canopy
dieback and elevated mortality rates (after 2017), which may
account for 22–35% of trees in some places (Figure 1A). The
Orera site is located in steeper slopes (slope range 15–20◦) than
the Miedes site (slope range 0–5◦). The understory of these
forests is formed by Quercus ilex L., Cistus laurifolius L., and
Arctostaphylos uva-ursi (L.) Spreng. The climatic conditions are
the continental Mediterranean with low precipitation (Prec.) and
strong temperature contrasts. The average annual temperature
is 12◦C, and the annual Prec. is 423 mm with a peak in spring
and a secondary maximum in autumn. The period with a water
deficit starts in June and may last until October (Supplementary
Figure 1). The lithology of the zone is dominated by quartzites
producing acid, rocky soils with sandy-loamy texture, and being
relatively shallow (20–50 cm).

Sampling and Growth Chronologies
Building
Sampling was done in 2019 and 2020. We measured the diameter
at 1.3 m (Dbh, diameter at breast height) and visually assessed the
percent of crown defoliation in pairs of neighboring, dominant
trees with different defoliations but similar Dbh (Table 1). We
considered two groups of vigor based on crown defoliation
following Camarero et al. (2015a): D trees with more than 50%
of defoliation and ND trees with less than 50% defoliation (refer
examples in Figure 1A).

We took two cores per tree at 1.3 m using Pressler increment
borers (Haglöf Sweden, Sweden). In total, 67 trees were sampled
(Table 2). The collected cores were air-dried and carefully
sanded to distinguish the rings following standard procedures
in dendrochronology (Fritts, 1976). Samples were then visually
cross-dated, and tree-ring widths (RW) were measured with a
0.001 resolution using scanned images (resolution 2400 dpi) and
the CDendro software (Larsson and Larsson, 2018). Tree age at
1.3 m was estimated by counting the number of rings in the cores
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TABLE 1 | Main features of the study sites and sampled trees.

Site Latitude N Longitude W Elevation (m) Tree type Dbh (cm) Age at 1.3 m (years) Defoliation (%)

Orera 41.31 1.45 884 ND 36.0 ± 1.7b 82 ± 3 4.9 ± 2.2a

D 31.5 ± 1.2a 78 ± 3 94.8 ± 2.2b

Miedes 41.27 1.43 961 ND 26.1 ± 0.9b 92 ± 2 10.7 ± 1.7a

D 21.3 ± 0.7a 88 ± 2 58.0 ± 3.1b

“ND” and “D” are non-declining and declining trees, respectively. Values are means ± SE. Different letters indicate significant (p < 0.05) differences between vigor classes
within each site according to Mann–Whitney tests.

FIGURE 1 | (A) Views of non-declining (ND), declining (D), dying, and recently dead Pinus pinaster trees sampled in the Miedes study site. (B) Temporal variability of
the annual climatic water balance (P-PET) according to the data from the Daroca meteorological station. The dashed and dotted lines show the threshold for
considering water balances significantly lower than the long-term mean (period 1920–2020) at the 0.05 and 0.01 significance levels, respectively. The histograms
show the distribution of the water balance for the compared 1920–1969 and 1970–2020 periods. The red symbol highlights the 2017 drought.

with pith or with curved inner rings. We also counted latewood
intra-annual density fluctuations (IADFs) by inspecting the cores
under a binocular microscope (Leyca, Wetzlar, Germany). The
visual cross-dating was checked using the software COFECHA
(Holmes, 1983).

The RW series were standardized and detrended. First,
Friedman’s super smoother functions with intermediate smooth

values were fitted to individual RW series to obtain ring-width
indices (RWI) that preserved high-frequency variability.
Second, we removed most first-order autocorrelations by fitting
autoregressive models. Third, we obtained the mean series of
pre-whitened RWIs or chronologies using bi-weight robust
means. These mean series were calculated for D and ND trees in
the two study sites separately. These analyses were performed
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TABLE 2 | Tree-ring width (RW) data and statistics, first-order autocorrelation (AR1), mean sensitivity (MS), and correlation with mean series of D and ND trees in the
Orera and Miedes study sites.

Site Tree type No. trees No. radii Tree ring width (mm) AR1 MS Correlation with mean series

Orera ND 14 26 1.15 ± 0.08 0.75 ± 0.02 0.40 ± 0.01a 0.82 ± 0.01b

D 23 46 1.08 ± 0.06 0.69 ± 0.03 0.42 ± 0.01b 0.79 ± 0.01a

Miedes ND 15 30 0.85 ± 0.04b 0.64 ± 0.03a 0.43 ± 0.01a 0.81 ± 0.01b

D 15 30 0.73 ± 0.03a 0.74 ± 0.01b 0.46 ± 0.01b 0.73 ± 0.01a

“ND” and “D” are non-declining and declining trees, respectively. Values are means ± SE for the common period 1930–2019. Different letters indicate significant (p < 0.05)
differences between vigor classes according to Mann–Whitney tests.

using the package dplR (Bunn, 2008) in the R statistical package
(R Core Team, 2020). We calculated the Expressed Population
Signal (EPS) and the mean interseries correlation (rbar) to assess
the coherence and replication of the resulting series (Wigley et al.,
1984). We considered the period 1930–2019 with EPS > 0.85 to
be well replicated. The rbar was calculated for 20-year intervals
that shifted every year.

Climate Data
Climate data were obtained at daily and monthly resolution
from the Daroca meteorological station (41◦06′54′′N, 1◦25′0′′W,
782 m a.s.l.), which is located 18 km away from the sampling
sites. The data series consisted of daily mean temperature (Tm),
maximum temperature (Tx), minimum temperature (Tn),
and Prec. for the period 1920–2020. Additionally, seasonal
Tm and total Prec. were calculated for winter (December to
February), spring (March to May), summer (June to August),
and autumn (September to November). We also obtained
1.25◦-gridded, monthly values of 1-m soil moisture for the
period 1970–2016 from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis (ERA)-Interim
reanalysis (Dee et al., 2011). In addition, we also calculated the
climatic water balance or difference between Prec. and potential
evapotranspiration (P–PET). The PET was calculated using the
FAO-56 Penman-Monteith equation (Allen et al., 1998).

VS Growth Model
We focused on inter-annual Grs and calibrated and validated
observed series of RW indices by comparing them with simulated
series (Tumajer et al., 2017). The VS model (VS-oscilloscope
ver.1.362) was used for modeling the Miedes and Orera RWI
series of D and ND trees. The VS model is a process-based
growth model of intermediate complexity that has been widely
applied and validated in conifers (refer, among others, Vaganov
et al., 2006; Touchan et al., 2012; Shishov et al., 2016; He et al.,
2017; Popkova et al., 2018; Tychkov et al., 2019; Tumajer et al.,
2021). The model simulates daily Grs focusing on xylogenesis
(enlargement, division, and differentiation of tracheids) and
considering the data daily values of air temperature, Prec.,
and radiation as input. The model parameters defined the
integrated Gr and the relative GRs due to soil moisture (GrW)
or temperature limitations (GrT). During the year, days were
classified according to the main climatic limitations of growth as:
temperature – (GrT < GrW) or moisture-limited (GrW < GrT)
and optimal (GrM = GrT = 1).

We used data from daily climate variables (air temperature,
Prec., radiation) and the standard RWI series as input data.
In total, 18 parameters were used to calibrate the model (refer
a description of the model and parameters in Supplementary
Table 1). The study period was 1930−2019, and it was divided
into two sub-periods (1930−1969 and 1970−2019) to calibrate
and verify the model predictions, respectively (Cook and
Kairiukstis, 1990). The model was adjusted by modifying the
parameters until the correlation between the four observed and
predicted RWI series reached maximum values. The degree of
adjustment between the observed and predicted RWI series was
assessed using Pearson correlation coefficients (r) and the root
mean squared error (Tychkov et al., 2019).

Statistical Analyses
All analyses were performed in R (R Core Team, 2020).
We evaluated the trends of the daily and seasonal climatic
variables (Tx, Tn, Prec. and P–PET) with the Mann–Kendall
test (τ). Comparisons between years (climate data), variables of
sites, or vigor classes (defoliation) were assessed using Mann–
Whitney tests.

To assess the differences in growth variability between the
two vigor groups, pointer years (Cropper, 1979) and resilience
components (Lloret et al., 2011) were calculated using the R
package PointRes (van der Maaten-Theunissen et al., 2015).
Positive and negative pointer years were calculated considering
a 7-year window size, a 0.75 growth deviation, and a minimum
percentage of 75% of trees displaying positive or negative event
years. Then, the resilience components proposed by Lloret et al.
(2011) were calculated using the standard RWI series. We
selected the four most severe droughts occurring after the wet-
cool 1970s (1983, 2001, 2009, and 2015) because the annual water
balance was below the mean in most years of the 1980−2020
period (Figure 1B). We considered a 3-year window for pre-
and post-disturbance (drought) periods. The resistance index was
the ratio between RWIs during drought and the 3-year previous
period, and the recovery index was the ratio between the 3-year
post-drought period and the drought RWI values. Finally, the
resilience index was the ratio between the 3-year RWI values after
and before the drought. We compared the individual values of
the three resilience indices (resistance, recovery, and resilience)
between ND and D trees using Mann–Whitney tests.

Climate-growth relationships were assessed by calculating
bootstrapped Pearson correlations between monthly climatic
parameters and the mean residual RWI series for the period
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FIGURE 2 | Long-term radial-growth patterns of D (black circles) and ND (gray triangles) trees in the (A) Orera and (B) Miedes study sites. Values are means SE
(note the logarithmic scales in the left Y-axis). The number of measured radii (lines) is shown in the right Y-axis.

1930–2019. Monthly Tx, Tn, and water balance from the
previous September to the current September were included in
the windows of analysis. To assess the changes through time
in climate-growth associations we also calculated the moving
climate-growth relationships for selected climate variables
considering the 30-year moving intervals that shifted every year
from 1930 to 2019. The calculations were performed for ND and
D trees using the R package Treeclim (Zang and Biondi, 2015).

We fitted generalized additive mixed models (GAMMs;
Wood, 2017) to study the temporal trends in simulated daily
Grs using vigor class and date (DOY, day of year) as explanatory
variables. The year was used as a random factor, and a first-
order autocorrelation structure (AR1) was introduced to account
for temporal autocorrelations within each year. Separate analyses
were also performed for the two sub-periods (1930−1969

and 1970−2019). Finally, we fitted GAMMs considering the
interaction between the spring (March, April, and May) water
balance (P − PET) and DOY to test if the variation in Gr
differed between years with different water availabilities. An AR1
was again used to account for temporal autocorrelations. The
GAMMs were fitted using the mgcv package (Wood, 2011), and
the visreg package (Breheny and Burchett, 2017) was used to
visualize regression graphs.

RESULTS

Seasonal Climate Trends and Variability
The mean climatic water balance for the period 1920–2020 was
−728 mm with a SD of 167 mm. This variable has shown a
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negative and significant trend during that period (τ = −0.31,
p < 0.001) with a mean rate of change of −2.44 mm year−1

(Supplementary Table 2). The 2017 annual water balance
(−1,155 mm) was significantly lower than the long-term mean
at the 0.01 significance level due to very low spring (−274 mm)
and autumn water balances (−343 mm) (Figure 1B and
Supplementary Figure 2). These two low values correspond to
the minimum values of the long-term record for their respective
seasons (standardized anomalies of −1.9 and −2.29 in spring
and autumn, respectively). The mean Txs of the four seasons
significantly increased during the last 100 years, especially in
summer (τ =−0.41, p < 0.001; Supplementary Figure 3).

Growth, Defoliation, and Resilience
Indices
The diameter breast height at 1.3 m (Dbh) of D trees was
smaller than ND in both sites (Table 2). In Miedes, the RW
was also significantly lower in D than in ND trees, despite both
vigor classes showing similar ages. However, ND trees showed
higher first-order autocorrelation and mean sensitivity than D
trees in the same site. The ND trees showed a higher mean
correlation with the mean RW series than D trees in both study
sites (Table 2). The mean defoliation rate of sampled trees was
significantly lower (Mann–WhitneyU = 389, p = 0.022) in Miedes
(mean ± SE, 34.3 ± 4.7%) than in Orera (61.7 ± 7.3%). We
observed very high (>90%) defoliation rates in 6.7 and 47.4% of
trees sampled in Miedes and Orera, respectively, albeit the growth
rate was lower in Miedes.

The long-term pattern of radial growth variability was similar
between D and ND trees (Figure 2 and Supplementary Figure 4).
Within each site, both ND and D mean series of RWI were
significantly correlated during the 1930 − 2019 period (Miedes,
r = 0.79; Orera, r = 0.94; p < 0.001 in both cases). Similar strong
associations were found between sites either for ND (r = 0.66)
or D (r = 0.68) trees. The coherence in the year-to-year growth
variability between sites and vigor classes suggests a similar
response to climatic constraints such as water deficits.

We found a clear growth divergence between ND ad D trees
in both sites due to a growth reduction of D trees after the 2017
severe drought and after 2008 (about 12 years before the dieback
started) in Miedes (Figure 2). Trees from the Orera site also
presented a reduction in the mean interseries correlation of D
trees after the 1990s, which was subsequently reversed in the
2010s (Supplementary Figure 5).

The pointer years (Cropper values) were similar in magnitude
and direction between D and ND trees (Supplementary
Figure 6). The most negative pointer years coincided with dry
years (e.g., 1983, 2001, 2009, 2015, and 2017). The latewood
IADFs were usually observed during wet-cool years (e.g., 1952,
1961, and 1970s) with similar yearly frequencies in D and ND
trees (Supplementary Figure 7). However, the D trees tended
to form fewer IADFs after the 1980s as the climate warmed and
dried and their Grs decreased.

The resilience indices were similar between D and ND trees
in both sites apart from the 2001 recovery index with lower
values in ND trees in the Orera site and the 2009 resistance index
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FIGURE 3 | Moving climate-growth correlations of ND and D trees in the (A) Orera and (B) Miedes study sites. Plots show selected climate variables and their
relationships with RWI considering 30-year moving intervals that shifted every year from 1930 to 2019. Values are plotted for the first year of each 30-year interval.
Asterisks indicate significant (p < 0.05) correlations.

with higher values in ND trees from Miedes (Supplementary
Figure 8).

In both sites, crown defoliation and recent growth rate
(mean RW of the last formed 5 years) were inversely related
(Supplementary Figure 9).

Growth Responses to Climate: The
Importance of Water Balance
Growth was enhanced by cool and wet conditions in May
and June (Table 3). High water balance values from January
to April and September were associated with higher Grs. In
Miedes, high Tns from January to February improved growth.
The growth responsiveness to climate was similar between ND
and D trees apart from the positive influence of September
water balance on the growth of ND trees in both sites. These
relationships agree with the positive associations found between
growth and spring to early summer soil moisture, which were
stronger for ND than for D trees in Miedes (Supplementary
Figure 10).

The moving climate-growth correlations showed that March–
April water balance is gaining importance as a major driver
of growth in Miedes. Despite this, the May water balance is

losing relevance, whereas January–April and June water balances
are becoming significant drivers of growth in Orera (Figure 3).
These changes suggest shifts in the growing season, which we
investigated using the VS model.

Shifting Climatic Limitations of Tree
Growth
The simulated and observed RWI series of the calibration
and verification periods were significantly correlated, indicating
robust models (Supplementary Table 3 and Supplementary
Figure 11). The Gr values peaked from early May to mid-
June (Figure 4). A second autumn peak (September) was also
observed, suggesting a facultative bimodal growth pattern. The
GAMMs showed lower Grs of D than ND trees in both study sites
and periods (Table 4 and Figure 4).

Grs increased in years with higher spring water balance. We
observed shifts in climatic limitations of growth with optimal
conditions in wet-cool periods (e.g., the 1970s) and a trend
toward higher importance of water balance and soil moisture
as constraints of growth (Figure 5). This can be observed
by comparing wet-cool with dry-warm periods in the most
recent decades (the 2000s to 2010s), which shows simulated
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FIGURE 4 | Simulated Grs of the VS model obtained by relating daily climate data and mean series of RWI of D and ND trees in the (A) Orera and (B) Miedes study
sites considering the periods 1930–1969 and 1970–2019. The daily Gr values are means ± SD.

TABLE 4 | Results of the generalized additive mixed models (GAMMs) fitted to study the simulated growth variability (Gr) in P. pinaster D and ND in two consecutive
periods (1930−1969 and 1970−2019) in Orera and Miedes sites.

Site Period Tree type Edf F t R2

Orera 1930−1969 ND 8.68 509.7** 10.35** 0.63

D 8.57 385.1**

1970−2019 ND 8.72 456.7** 9.91** 0.66

D 8.60 340.3**

Miedes 1930−1969 ND 8.68 510.9** 10.41** 0.63

D 8.57 385.1**

1970−2019 ND 8.72 457.4** 9.97** 0.59

D 8.60 340.1**

For each model, the degrees of freedom (Edf) and F values associated with the smooth parameter (DOY, day of the year) and their interaction with tree vigor (ND and D
trees) are shown. In addition, the significance of the t statistic comparing vigor classes and the R2 of the model are presented. Significant values (P < 0.01) are indicated
with **.

Grs below the soil moisture (sm) threshold for growth (W3,
Figure 6). There was a significant interaction of spring water
balance and DOY on Grs in both sites, indicating a shift in

the climatic limitations of growth related to lower soil moisture
availability due to a more negative water balance (Figures 1, 7
and Supplementary Table 4).
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FIGURE 5 | Simulated radial growth rates (Gr) based on the fits of the VS model to mean series of RWI of ND and D trees in the Orera (A) and Miedes (B) study
sites. The graphs show the growth function (Gr) values for each day of the year (DOY, Y-axis) and considering the period 1930 – 2019 (X-axis). Plotted values are
classified according to soil-moisture (GrW < GrT, orange-red symbols) or temperature limitation of growth (GrT < GrW, blue symbols). The green symbols indicate
optimal growing conditions (GrT = GrW = 1).

DISCUSSION

The findings contribute to recent research showing how
successive and hotter droughts lead to pervasive growth
reductions (Cailleret et al., 2017; Camarero et al., 2018) and
trigger dieback and mortality in Mediterranean P. pinaster forests
(Gea-Izquierdo et al., 2019; Férriz et al., 2021). The presented
results confirm the first hypothesis that Grs of D trees were
lower than ND trees in at least one site (Miedes), but refute

the idea of D trees being more vulnerable to drought stress
unlike what has been found in other conifer species such as
Abies alba (Camarero et al., 2015a). We found that the growth
of ND and D trees was severely impacted by warm and dry
spring conditions and that climate is warming and drying in
the study area, with a record spring hot drought found in 2017.
In Miedes, ND trees were more responsive to water availability
than D trees as confirmed in the correlation analyses with soil
moisture. In Miedes, the growth of D trees is uncoupling from
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FIGURE 6 | Tree growth is becoming more limited by warmer and drier climate conditions according to the Vaganov-Shashkin (VS) model simulations. The plot
shows the partial Grs driven by soil moiture (GrW) or temperture (GrT) limitations of growth, and depending on soil moisture (sm) during the year (X-axis shows DOY).
We compared wet-cool (1970–1989, mean annual water balance –673 mm) and dry-warm (2000–2019, mean annual water balance –873 mm) periods in the case
of the trees from the Miedes site. The W3 is the soil moisture threshold needed for growth (refer Supplementary Table 1).

climatic constraints, perhaps because they are presenting legacy
or carryover effects (Anderegg et al., 2015) of previous droughts,
thus impairing their post-drought recovery.

The growth loss of D trees was recent in Orera, as it started in
2017, but could be dated back to 2008 in Miedes, where ND trees
showed higher responsiveness to water availability. The findings
are in line with previous studies showing that P. pinaster radial
growth is very dependent on sufficient water availability and
elevated soil moisture from the prior winter to early summer
(Bogino and Bravo, 2008; Camarero et al., 2015b). The study
species is considered a drought-avoiding conifer (Picon et al.,
1996) with rapid stomatal closure in response to mild-water stress
which, thereby, reduces photosynthetic rates (Ripullone et al.,
2007). These responses could explain the elevated rates of needle
shedding observed in D trees in this study and elsewhere (Férriz
et al., 2021). Such irreversible canopy defoliation could reflect
a hydraulic failure in many shoots and impair carbon uptake
leading to dieback (McDowell et al., 2008).

The sensitivity of xylogenesis to inter- and intra-annual
changes in water availability is also reflected in its ability to
form abundant latewood IADFs and modulate its xylogenesis in
seasonally dry sites (Vieira et al., 2009, 2010, 2013). However, this
xylem plasticity has limits. This would explain how the extremely
hot 2017 drought triggered the recent dieback process. The results
suggest that ND trees from Miedes grew more than their D
conspecifics and were more sensitive to spring water deficits,

which agrees with a recent study (Férriz et al., 2021). The different
impacts of drought on conspecific individuals could be caused by
differential vulnerabilities to xylem embolism related to greater
vulnerabilities to xylem conduit implosion and/or a lower ability
to store carbohydrates or show post-drought recovery in D trees
(Gaylord et al., 2015; Savi et al., 2020). In contrast, tree-ring data,
VS model simulations, and IADFs show that ND and D trees from
Orera were similarly stressed by drought. For instance, growth
divergence between both vigor classes was only apparent after the
severe 2017 drought. The correlation between the mean series
of these classes was higher than in Miedes, suggesting a strong
coherence in growth between conspecifics regardless of recent
defoliation. In Orera, ND trees also produced a low frequency
of IADFs since the 1980s, suggesting a drought-constrained
or a low ability to show bimodal patterns. Interestingly, the
VS model indicated a higher bimodality in ND trees, which
responded more to the September Prec. This bimodality was
probably more evident during wet-cool periods (the 1960s and
1970s) when growing conditions were less stressful and more
IADFs were produced. This different response to climate suggests
the higher growth plasticity of ND trees in response to autumn
Prec., but this should be further investigated. Differences in
growth responsiveness to climate between the two study sites
cannot be attributed to genetic origin (cf. Sánchez-Salguero et al.,
2018) since they are separated by ca. 5 km, and the two stands
belong to the same provenance. Stand structure does not seem
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FIGURE 7 | Effects of the DOY, the spring water balance (P – PET, Y-axis),
and their interaction on the simulated Gr (color scale) in the Orera (A) and
Miedes (B) study sites. The analyses correspond to GAMMs fitted to Gr data
for the period 1930–2019.

to explain these differences because, in both cases, we sampled
open stands with low to mid densities (J. J. Camarero, personal
observation) where competition for soil water was probably
low. A potential factor explaining site-contingent responses or
different vulnerabilities of neighboring trees may be related to
the actual amount of water stored by soil, since Orera trees
were growing on steeper slopes that may make them more
stressed by warm and dry conditions. In contrast, D trees in
Miedes could be growing on sites with shallow, rocky soils or
showing intrinsic anatomic or physiological traits that reduce
their drought resilience. We did not observe D, less vigorous
trees showing significantly lower resilience to drought as has
been observed for dying trees in many sites (DeSoto et al., 2020).
However, only two vigor classes were considered in this study
based on their contrasting crown defoliation. Further studies
with larger samples allowing for a more complete classification of
defoliation classes may be helpful to advance the understanding
of the relationships between canopy defoliation and growth vigor
in P. pinaster.

Process-based models have not been able to accurately predict
drought-induced tree mortality (Hendrik and Cailleret, 2017;
Choat et al., 2018), which limits the forecasting capacity of
vegetation dynamics in a warmer and drier world. Physiological

models explicitly consider hydraulic architecture and carbon
allocation processes to simulate drought-induced dieback and
tree mortality (Xu et al., 2013), but process-based models
such as the VS model could be more easily parameterized to
provide growth forecasts (Sánchez-Salguero et al., 2017; Sánchez-
Salguero and Camarero, 2020). Such growth models could also be
compared with retrospective analyses of hydraulic and carbon-
use proxies obtained from RW, such as wood anatomical or
isotope discrimination data (Gaylord et al., 2015; Pellizzari et al.,
2016).

The modeling approach also has limitations, such as the
relative simplicity of the VS model, which focused on carbon
sinks (cambium activity) but did not consider physiological
processes related to gas and water exchange and how they are
linked to hydraulic failure (Plaut et al., 2012) as other more
complex models do (Hendrik and Cailleret, 2017). The VS
model simulates radial-Grs (RWI) with great accuracy but is not
able to produce a series of absolute growth values (e.g., basal
area increment), an output generated by other models dealing
with carbon allocation (Li et al., 2014). Finally, the modeling
framework uses input means and indexed growth series for D
and ND trees. Despite this, more realistic approaches should
deal with individual growth data to account for the huge growth
variability among conspecific, coexisting trees. Such variabilities
could be related to differences in soil features (e.g., depth, texture,
and water holding capacity) or stand structure (e.g., tree-to-tree
competition), which should be considered in further modeling
exercises. Interestingly, some of the values used to parametrize
the VS model, such as root depth, were realistic enough and
produced reliable simulated Grs since P. pinaster forms most
fine roots in the uppermost 40 cm of the soil in dry sites
(Bakker et al., 2006).

CONCLUSION

We studied recent dieback events in two P. pinaster stands
using a retrospective approach and the process-based VS model.
Dieback was characterized by recent growth declines and crown
defoliation, which were responses to prior spring droughts.
Overall, ND trees presented higher Grs. However, the growth
responses to climate were also contingent on on-site conditions,
with long and short growth declines prior to the dieback onset
in Miedes and Orera sites, respectively. The growth of ND trees
from the Miedes sites responded more to water balance and soil
moisture, suggesting that D trees from this site were chronically
stressed as inferred for all trees from the Orera site. Process-
based growth models should be more widely used and refined
to characterize the mechanisms of drought-induced dieback and
be used as prospective tools to forecast forest dynamics under
warmer and drier climate scenarios.
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