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g ECOFIELD, Monitorizações, Estudos e Projectos, Lda., Est de Polima 673, Moradia 1.◦, 2785-543 São Domingos de Rana, Cascais, Portugal   

A R T I C L E  I N F O   

Keywords: 
Dendroecology 
Drought 
Fraxinus angustifolia 
Radial growth 
River hydrology 
Tree rings 

A B S T R A C T   

Mediterranean riparian forests are among the most threatened ecosystems in Europe. These ecosystems are 
exposed to land-use changes threatening their reduced habitat and by global warming, which is already trig-
gering aridification processes. To assess the impact of these major threats, we studied the radial-growth responses 
to climate and drought in the narrow-leaved ash (Fraxinus angustifolia). This riparian tree species presents a 
relatively large ecological spectrum in its habitat preference in the Mediterranean Basin. We studied five sites 
arranged across a wide geographical range from Iberia to Italy, subjected to contrasting climatic conditions and 
located in hydrographic basins with different sizes and water regimes. We found diverse growth responses to 
climate and drought across the Mediterranean distribution range of the narrow-leaved ash at the individual and 
site levels. The growth of this species increased in response to wet and cool conditions in the prior winter and 
spring. The response to summer conditions was only observed in the coldest and wettest site (Ticino). Growth 
responded negatively to 2–14 month droughts that occurred from previous winter up to summer, particularly in 
the warmest-driest sites. Growth responses to drought peaked in the warmest-driest sites in terms of climate 
water balance (Odelouca, Doñana), but not in the driest sites in terms of annual precipitation (Tudela, Zaragoza). 
Hydrological conditions also affected the narrow-leaved ash with high discharges in the prior winter and early 
spring enhancing wood production. Considering projected aridification and increased hydrological alteration, 
implying limited water supply in the Mediterranean region, climate warming will negatively impact productivity 
of narrow-leaved ash riparian forests. Further research should combine analyses of growth responses to climate 
and hydrology from tree to basin scales to disentangle their relative roles as drivers of productivity under 
different scenarios of climate and hydrological changes, in order to aid adaptive management of these key 
ecosystems.   

1. Introduction 

In climate-change hotspots such as the Mediterranean Basin drought 
is becoming a major driver of productivity and tree growth changes in 
riparian and floodplain forests (Gomes Marques et al., 2018, Stella and 

Bendix, 2019). Climate warming and land-use changes can interact and 
further threaten riparian forest ecosystems by exacerbating aridifica-
tion, altering hydrological regimes and contributing to the expansion of 
pathogens (Rodríguez-González et al. 2010, 2014, Dufour et al., 2018, 
Adamcikova et al., 2018). In this region, but also in wetter central and 
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northern Europe, growth decline, canopy dieback and elevated mortal-
ity have been described in major riparian tree species such as black alder 
(Alnus glutinosa (L.) Gaertn.) (Valor et al. 2020) and common ash 
(Fraxinus excelsior L.) (Enderle et al., 2019, Hultberg et al., 2020, Klesse 
et al., 2020). 

Tree growth and productivity of riparian forests depend on hydro-
logic and climatic regimes of the catchment which regulate relevant 
functional aspects, such as the canopy evaporative demand, the water 
table depth and soil water availability (Stella et al., 2013). In particular, 
droughts can trigger a drop in water table and limit the access of trees to 
soil water, leading to growth decline (Andersen, 2016), increasing tree 
mortality (Scott et al., 1999, Tulik et al., 2020). Intense and long 
droughts negatively impact riparian and floodplain forests, specifically 
tree species with a low plasticity in root system depth (Garssen et al., 
2014). However, this was concluded based on meta-analyses carried out 
with seedlings, illustrating our poor knowledge of the long-term growth 
responses to climate, drought and hydrological changes in adult trees of 
major riparian tree species (but see Stromberg and Patten, 1996, Scott 
et al., 2000, Cailleret et al., 2019). A better understanding of radial- 
growth responses to climate and drought in Mediterranean riparian 
forests is required to project their dynamics under climate change, and 
also to better manage these threatened forest ecosystems and related 
water resources (García-Ruiz et al., 2011, Gomes Marques et al., 2018). 

In the Mediterranean region, the narrow-leaved ash (Fraxinus 
angustifolia Vahl) replaces the common ash and mainly appears in cool- 
wet sites along rivers, their floodplains and wetlands, being part of 
mixed broadleaved forests (Caudullo et al., 2016). It grows on sites with 
moist soils, in temporary flooded lowlands, but also on well-drained 
slopes at cold, high-elevation sites forming mixed stands with other 
broadleaved species such as cottonwoods, oaks and elms (Caudullo 
et al., 2016). In addition to hydroclimatic factors (Rodríguez-González 
et al., 2008), the narrow-leaved ash development also responds to soil 
structure and composition (Gomes Marques et al., 2018), making this 
species potentially dominant in less local water-dependent habitats 
within floodplains. 

The narrow-leaved ash shows a relatively large ecological spectrum, 
both in bioclimatic setting and in hydrological requirements, spanning 
from strictly riparian to transitional upland forests (Gomes Marques 
et al., 2018). Thus, studying growth dynamics of this species across 
southern Europe allows characterizing the responses of a major riparian 
tree species across a large environmental range and to forecast dynamics 
and post-drought resilience of threatened Mediterranean riparian eco-
systems (Stella et al., 2013). These forecasts are important to get insight 
into climate-growth response and predict future Mediterranean ash 
forests distribution, which over the last centuries experienced a great 
reduction due to conversion of floodplain forests into agricultural fields 
(EEA, 2015). Several studies conducted in southern Iberia recently 
acknowledged the importance of ongoing rising temperature due to 
climate change and increased pressure on water resources in triggering 
productivity changes (Rodríguez González et al., 2017, Gomes Marques 
et al., 2018). These changes might potentially contribute to composition 
shifts in the remaining floodplain ash stands (Rodríguez González et al., 
2017; Gomes Marques et al., 2018). 

To the best of our knowledge, there are yet no studies investigating 
the variability in growth response of narrow-leaved ash stands to 
different climatic conditions across different hydrologic settings. Here 
we quantified past radial-growth dynamics by using dendrochronology 
(Fritts, 1976) and assessed how climate and hydrology impacted growth. 
Specifically, we aimed: (i) to reconstruct radial-growth patterns of 
narrow-leaved ash populations in five sites located across the central 
and western Mediterranean Basin, (ii) to quantify climate- and drought- 
growth relationships, and (iii) to evaluate the relative importance of 
seasonal climate variables, tree age and diameter as drivers of radial 
growth. As ash species are characterized by a shallow root system and 
tend to use surface soil water (Singer et al 2013), we hypothesized that 
the growth responses to warm-dry climate conditions and drought 

would be more marked in drier than in wetter sites, and these responses 
would be modulated by warmer growing-season temperatures 
enhancing evapotranspiration rates. 

2. Materials and methods 

2.1. Study sites 

The five study sites were selected such that they covered contrasting 
environmental conditions where the narrow-leaved ash occurs 
(Table 1). Three of them were located in Spain, one in southern Portugal 
and the other in northern Italy (Fig. 1). We sampled two sites situated 
near the cities of Zaragoza and Tudela in the Ebro basin, which is located 
in the north-eastern Iberian Peninsula, occupying a total surface of 
85,362 km2 and representing the largest hydrographic basin in Spain 
and the third one in surface of the Mediterranean. These two sites are 
situated in the Middle Ebro basin, where the river has a low longitudinal 
slope and forms meandering channels (Ollero, 2007). Two relatively 
well-preserved floodplain forests were considered: Soto de la Remonta 
(near Tudela, Navarra region) and Soto de Partinchas (near Zaragoza, 
Aragón region), which experienced past local disturbances such as the 
building of local dikes in the 1950s and 1960s, particularly near the 
Zaragoza site (Ollero, 1990). The Tudela site shows free-flowing river 
dynamics and a forest structurally more diverse than the Zaragoza site 
(Ayerra, 1988). Climate in this area is semi-arid Mediterranean conti-
nental. The coldest and warmest months are January (5.4–5.6 ◦C) and 
July (22.7–23.6 ◦C), respectively. A pronounced summer dry period 
lasts from June to September. The Ebro river flows into the Iberian 
Depression, with marl and gypsum Miocene deposits in some areas. Soils 
are basic and of the loamy-sandy type. Reservoirs mainly built since the 
1950s have smoothed the Ebro river flow regime, reducing the higher 
winter flows and alleviating the low water levels in summer (Frutos 
et al., 2004). These forests are dominated by tamarisks (Tamarix spp.), 
white willow (Salix alba L.) and silver poplar (Populus alba L.) situated 
near the river bank, black poplar (Populus nigra L.) located in the tran-
sition zone, and narrow-leaved ash with scattered elm trees (Ulmus 
minor Mill.) in the understory, often affected by Dutch elm disease, sit-
uated inland. 

The Doñana study site (Andalusia, southern Spain) is situated along 
the floodplain forest of “La Rocina”, a tributary stream of 19 km length 
feeding from its western part the Doñana marshes which are located at 
the downstream section of the Guadalquivir river basin. La Rocina col-
lects runoff and groundwater along a sandy catchment of around 400 
km2. The average annual water discharge from La Rocina to the Doñana 
marshes has been reported about 40 hm3 (Manzano et al., 2005). The 
Doñana study site has a Mediterranean sub-humid climate (rainy au-
tumns and winters, hot and dry summers and mild winters) with mean 
annual precipitation of 549 mm and mean annual temperature of 
18.1 ◦C, ranging from 4.6 ◦C in January to 32.6 ◦C in July. In this site, 
the flood cycle starts in September and usually reaches the maximum in 
late winter, with this peak being subject to high rainfall variability. Clay 
and silt substrates predominate in the Doñana marshes which are soaked 
with the first rains and a shallow water layer spreads over the flooded 
area. The tributary river network streams into the marshes maintaining 
water levels as runoff flows through their catchments. The marshes are 
included in the Doñana National Park, yet, La Rocina floodplain forests 
and a surrounding 500 m buffer have a minor protection status, limited 
to the downstream 12 km. The floodplain forest is mainly dominated by 
narrow-leaved ash colonizing the transitional areas between highly 
flooded sites, which are dominated by Salix atrocinerea Brot. (Rodríguez 
González et al., 2017). 

The Odelouca study site is located in Odelouca river, a tributary of 
Arade hydrographic basin, located in Algarve Region, southern 
Portugal. The Odelouca basin has 511 km2 of drainage area and 92 km of 
slow-running streams, with a mostly natural (free-flowing) Mediterra-
nean flooding regime at the time of the sampling. Mean annual 
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precipitation is around 750 mm, mostly concentrated in a wet period 
from October to April, contrasting with a very dry period from June to 
September. The monthly temperatures range between 11.6 ◦C (January) 
and 23.1 ◦C (August). The main substrates of the drainage basin are 
sedimentary and metamorphic formations, in particular clay shales, 
greywacke and sandstones. The riparian forests at the Odelouca basin, 
are mainly dominated by narrow-leaved ash, willow (Salix salviifolia 
Brot.), tamarisk (Tamarix africana Poir), oleander (Nerium oleander L.) 
and alder (A. glutinosa) (Rodríguez-González et al., 2014, Gomes Mar-
ques et al., 2018). 

The Ticino study site is located in the Lonate-Pozzolo basin within 
the Ticino regional Park (northern Italy), in a flat area close to the Ticino 
river (8◦49′E, 45◦26′N, 115 m a.s.l.). This area is part of the upper Po 
sub-basin, which has been regulated at least for the past 60 years 
(Colangelo et al., 2018). Climate in the study area is temperate and 
humid. Mean annual precipitation is 1030 mm mainly concentrated in 
autumn with the highest and lowest values in October (122 mm) and 
January (59 mm), respectively. Whilst mean annual temperature is 

12.6 ◦C, the coldest and warmest months are in January (0.8 ◦C) and 
July (24.6 ◦C), respectively. The site is characterized by the presence of 
the highly-permeable Upper Po Plain shallow aquifer, which is consti-
tuted by gravel and sand deposits over discontinuous clay layers located 
at least 50 m below the land surface. The substrate is dominated by 
sandy loam soils. The study site is a floodplain forest with mixed stands 
of oaks (Quercus robur L. and Quercus petraea Liebl.), A. glutinosa and 
U. minor. Some areas are dominated by invasive species such as black 
locust (Robinia pseudoacacia L.) (Colangelo et al., 2018). 

2.2. Climate, drought and hydrological data 

To obtain homogenised, long-term series of monthly climatic data 
(mean temperature, total precipitation) we used the European 0.25◦- 
gridded E-OBS-v13.1 dataset (Cornes et al., 2018), and downloaded the 
corresponding series from the nearest 0.25◦ grid point located near each 
study site. To illustrate the site dryness, we calculated the annual 
average climatic moisture index (CMI) following Willmott and Feddema 

Table 1 
Sites’ geographical and climatic characteristics. Climatic data was obtained from European 0.25◦-gridded E-OBS-v13.1 dataset (Cornes et al., 2018). The last column 
shows the climatic moisture index (CMI) dry (wet) sites showing negative (positive) CMI values.  

Site Country Latitude (N) Longitude Elevation (m a.s.l.) Mean annual temperature (◦C) Total annual precipitation (mm) CMI 

Odelouca Portugal 37◦14′ 8◦30′W 120  16.9 750 − 0.43 
Doñana Spain 37◦06′ 6◦39′W 69  18.1 549 − 0.60 
Zaragoza Spain 41◦42′ 0◦56′W 205  14.7 357 − 0.38 
Tudela Spain 42◦07′ 1◦35′W 257  13.9 485 − 0.33 
Ticino Italy 45◦26′ 8◦50′E 202  12.6 1030 0.17  

Fig. 1. Map with the five ash sites sampled in 
southern Europe (a) and views of the Ticino (b) and 
Doñana (a) study sites. In the upper map, the green 
line delimits the distribution area of the narrow- 
leaved ash (Fraxinus angustifolia) in the Mediterra-
nean Basin, whereas the color scale shows the climate 
moisture index (CMI) with wet and dry sites climates 
showing positive or negative CMI values, respectively. 
The blue thick lines in the map represent the hydro-
graphic networks of the sampled ash stands (a). (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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(1992): 

CMI =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P
PET

− 1, if P < PET

0, if P = PET

1 −
P

PET
, if P > PET

(1)  

where P and PET are the precipitation and potential evapotranspiration, 
respectively. The CMI ranges from − 1 to +1, with higher values corre-
sponding to wetter sites. The PET was calculated using the Hargreaves 
method (Hargreaves and Samani, 1982). 

We also used the Standardized Precipitation Evapotranspiration 
Index (SPEI) to characterize drought severity (Vicente-Serrano et al., 
2010). This multiscalar drought index was calculated for several time-
scales (from 1 to 24 months) to take into account the duration of water 
shortage. The SPEI varies from − 3 to 3, being categorized as extremely 
wet (2.00 and above), very wet (1.50–1.99), moderately wet 
(1.00–1.49), near normal (− 0.99 to 0.99), moderately dry (− 1.00 to 
− 1.49), severely dry (− 1.50 to − 1.99), and extremely dry (− 2.00 and 
less) conditions. The SPEI was estimated using the SPEI package for R 
(Beguería and Vicente-Serrano, 2017). 

Long-term annual discharge data were only available for the two 
Spanish sites located in the Ebro basin (Tudela and Zaragoza) and for the 
Portuguese site located at the Odelouca river. We obtained annual 
discharge data for the hydrological year (prior October to current 
September) for the period 1970–2016 from the National flow and 
discharge database (Centro de Estudios y Experimentación de Obras 
Públicas, https://ceh.cedex.es). Flow data were obtained from two 
gauging stations located in Castejón (42◦11′N, 1◦41′W, 260 m a.s.l.) and 
Santiago (41◦39′N, 0◦53′′W, 201 m a.s.l.) bridges over the Ebro river and 
located 10.4 km and 6.2 km upstream and downstream from the Tudela 
and Zaragoza sites, respectively. Hydrological data from the Odelouca 
river were obtained from Portuguese Environmental Agency online 
database (http://snirh.pt). Monthly flow (Hm3) records (1961–2000), 
were collected from Monte dos Pachecos gauging station (code 30G/ 
01H, 37◦18′N, 8◦28′W, 55 m a.s.l.), located few meters downstream the 
river reach where the trees were sampled. 

2.3. Field sampling and dendrochronological data 

Field sampling included the measurement of tree diameter at breast 
height (Dbh, 1.3 m) and coring of dominant trees. We selected and 
sampled from 12 to 17 trees per site (Table 2). Two increment cores per 
tree were sampled per tree at 1.3 m using 5-mm Pressler increment 
borer. Tree rings were visually cross-dated and tree-ring widths were 
measured to the nearest 0.01 mm using a binocular microscope coupled 
to a computer with the LINTAB-TSAP package (Rinntech, Heidelberg, 
Germany). The COFECHA program was used to evaluate the visual cross- 
dating of tree-ring series (Holmes, 1983). Tree age at 1.3 m was esti-
mated as the maximum number of rings of the two cross-dated radii per 
tree and considering only those cores showing the pith or curved 
innermost rings. To quantify growth, tree-ring widths were transformed 
into basal-area increment (BAI) assuming concentric rings and using the 

following formula: 

BAIt = π(R2
t − R2

t− 1) (2)  

where R is the radius of the tree and t is the year of tree–ring formation. 
We developed site mean series of ring-width indices (chronologies) 

for the five sites using the dplR (Bunn, 2010, Bunn et al., 2018) and 
detrendeR R packages (Campelo et al., 2012). We fitted 30-year long 
smoothing splines with a response of 0.5 to each tree-ring width series. 
Then, auto-regressive models were applied to each indexed ring-index 
series. The resulting individual series were averaged using bi-weight 
robust means to compute the pre-whitened, residual chronology in 
each site (Fritts, 1976). 

Several dendrochronological statistics were calculated on each 
chronology to compare them (Briffa and Jones, 1990): AR1, first-order 
autocorrelation of raw ring-width data measuring the temporal persis-
tence of growth; Ms, mean sensitivity of ring-width indices measuring 
the relative changes in width between consecutive rings; Rbar, mean 
inter-series correlations, measuring the internal coherence between in-
dividual series within each site. Lastly, we calculated the Expressed 
Population Signal (EPS) to assess how similar the chronologies were to a 
theoretical, infinitely replicated chronology (Wigley et al., 1984). 
Following these authors, and considering an EPS value higher than of 
0.85, we determined the best replicated period for each chronology. 

2.4. Statistical analyses 

2.4.1. Site-level approach 
We analysed how climate and tree features were related to radial 

growth using two approaches, at the site and individual level, and 
considering site series of ring-width indices and individual BAI data, 
respectively. First, we compared Dbh, tree age and mean tree-ring width 
between sites using Mann-Whitney tests. Second, to assess climate- and 
drought-growth relationships we used Pearson correlations and related 
site chronologies with the corresponding monthly climate data (mean 
temperature, total precipitation). Correlations were calculated for the 
best-replicated and common period 1970–2009 considering monthly or 
seasonal climate data. These analyses were performed from previous 
September in the year before the tree-ring was formed to September of 
the year of tree-ring formation (hydrological year). In the case of the 
SPEI, we calculated correlations considering 1- to 24-month SPEI values 
based on previous analyses in other Mediterranean tree species (Gomes 
Marques et al., 2018, Pasho et al., 2011). Lastly, we calculated corre-
lations between the monthly annual discharge of the Ebro river and the 
Tudela and Zaragoza chronologies and between the monthly and annual 
flows of the Odelouca river and the Odelouca chronology. Climate- and 
drought-growth correlations were calculated using the treeclim R pack-
age (Zang and Biondi, 2015). 

2.4.2. Individual-level approach 
First, linear mixed effects models (LMMs) were fitted to investigate 

the relationships between BAI and seasonal climate variables at the in-
dividual tree level. In particular, seasonal values of temperature and 
precipitation of December-January-February (DJF), March-April-May 

Table 2 
Trees’ features, tree-ring width data and dendrochronological statistics calculated for the common, best-replicated period 1970–2009. Values are means ± SD. Ab-
breviations: Dbh, diameter at breast height; AR1, First-order autocorrelation; Ms, Mean Sensitivity, Rbar, mean inter-series correlation; EPS, Expressed Population 
Signal. The Rbar and the EPS values were calculated using residual-series for the best-replicated period (1970–2009). The whole time span was taken for the ring-width 
statistics. Comparisons between sites were based on Mann-Whitney tests (different letters indicate significant differences, p < 0.05).  

Site No. trees (No. cores) Dbh (cm) Age at 1.3 m (years) Tree-ring width (mm) AR1 MS Rbar EPS Period (EPS > 0.85) 

Odelouca 12 (24) 46.0 ± 3.0b 62 ± 13b 3.97 ± 0.91b  0.62  0.37  0.32  0.83 1953–2009 
Doñana 12 (23) 30.0 ± 1.2a 61 ± 12b 2.18 ± 0.41a  0.71  0.31  0.36  0.87 1947–2014 
Zaragoza 14 (24) 34.0 ± 1.2a 46 ± 3a 2.85 ± 0.55ab  0.67  0.34  0.56  0.95 1969–2016 
Tudela 17 (26) 31.0 ± 2.0a 47 ± 12a 2.77 ± 0.43ab  0.63  0.33  0.26  0.86 1970–2016 
Ticino 16 (23) 36.0 ± 1.4a 59 ± 14a 3.21 ± 0.74b  0.66  0.27  0.21  0.80 1969–2017  
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(MAM), June-July-August (JJA), and September-October-November 
(SON) were treated as fixed effects. To account for the size- and age- 
related changes in tree growth, size (Dbh annual increment) and age 
(years) were incorporated as fixed effects. The models also included tree 
ID as well as its interaction with age (random slope) as random effects. 

We used a top-down strategy to obtain the minimal model, starting 
with the model that contains all fixed explanatory variables. All 
explanatory variables were centred to prevent collinearity between 
main effects and increase parameter interpretability (Schielzeth, 2010). 
The parameters of fixed structure in the equations were estimated by 
maximum likelihood (ML), whilst the restricted maximum likelihood 
(REML) estimators was used to estimate the random components of the 
model (Pinheiro and Bates, 2000). The likelihood ratio test was used for 
testing the statistical significance of random effects in LMMs and to 
determine the appropriate variance function and autoregressive struc-
ture (Pinheiro and Bates, 2000). 

Models reduction was performed throughout a stepwise approach 
which selected the most parsimonious model by minimizing the cor-
rected Akaike Information Criterion (AICc). At the end the reduced 
model gave the smallest goodness-of-fit indicators, i.e. lowest values of 
AICc and Bayesian information criterion (BIC) (Burnham and Anderson, 
2002). The variance inflation factor (VIF) was computed on the reduced 
models in order to test multicollinearity: the threshold for rejecting al-
ternatives was 2 since VIF > 2 suggested redundant explanatory vari-
ables (Dormann et al., 2013). 

Inspection of the model fits suggested that the variance of the within- 
tree residuals increased with increasing expected BAI values, suggesting 
variance heterogeneity in the data. Then a variance structure component 
that allows specification of model variance heterogeneity of the within- 
group (Pinheiro and Bates, 2000) was also accounted to correct mis-
specifications of the basic models. Additionally, the autocorrelation- 
moving average correlation structure corARMA of order (p, q) was 
used to address the within-tree autocorrelations of the errors observed in 
the data. Marginal R2 values (Nakagawa and Schielzeth, 2013) were 
computed using the r.squared function of the R package MuMIn (Barton, 
2020). We obtained the marginal (R2

m) and conditional R2 values (R2
c) 

accounting for the variance explained by fixed and fixed plus random 
effects, respectively. All statistical computations were implemented in R 
(R Development Core Team, 2020), and parameter estimation was car-
ried out by using the nlme library (Pinheiro and Bates, 2000). 

3. Results 

3.1. Tree and growth features 

In terms of tree features and mean population characteristics, the 
Odelouca, Ticino and Doñana sites showed the oldest trees reaching 
maximum ages at 1.3 m of 106, 100 and 93 years, respectively. In the 
two sites from the Ebro basin, trees were younger with maximum ages of 
77 and 53 years in Tudela and Zaragoza, respectively. Mean ages were 
significantly (p < 0.05) higher in Odelouca and Doñana than elsewhere 
(Table 2). In Odelouca, the largest diameters at breast height were 
recorded (mean Dbh = 46.0 cm), being also the site with the largest 
average growth rate (3.97 mm) among the studied sites. On the other 
extreme, Doñana showed the smallest growth rate (2.18 mm). Both 
Odelouca and Ticino study sites showed a higher variability in the tree- 
ring width standard deviation, whereas the first-order autocorrelation 
was highest in Doñana and Zaragoza. The mean sensitivity was low in 
Ticino (0.27), with a global average value of 0.32 indicating moderate 
year-to-year growth variability. The series intercorrelation peaked in 
Zaragoza with a value of 0.59 suggesting a high internal coherence in 
response to external drivers (e.g. climate or hydrological variables). 
Accordingly, the Expressed Population Signal was highest for Zaragoza 
(0.89), while Ticino (0.67) and Odelouca (0.68) showed the lowest 
values. The common and best-replicated period was 1970–2009 (Fig. 2) 
with EPS values greater than 0.85. 

When comparing the chronologies using Pearson correlations, we 
found significant associations for the sites from south-western (Ode-
louca and Doñana, r = 0.67, p = 0.001) and north-eastern Iberia (Tudela 
and Zaragoza, r = 0.46, p = 0.003) indicating common growth vari-
ability in these two climatically contrasting regions (Figs. 1 and 2). 

3.2. Growth responses to tree level features and climate 

The selected LMMs showed that tree Dbh was the most important 
predictor of BAI, except in Ticino where tree age was more important 
(Table 3). The models showed a high explanatory power with fixed 
factors explaining from 28% (Doñana, Tudela) to 63% (Ticino) of BAI 
variance. In general, warm spring (March to May) conditions negatively 
impacted radial growth for the three dry sites (Doñana, Tudela and 
Zaragoza). On the other hand, both the prior winter (December to 

Fig. 2. Mean series of tree-ring width, where y values are log means ± SE (a) and ring-width indices where y values are means ± SE (b) of the five study sites. Vertical 
lines indicate beginning and end of best replicated period with higher EPS (1970–2009). 
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February) precipitation and the current spring (March to May) precipi-
tation showed a significant positive effect on growth in Odelouca and 
Doñana. In Zaragoza, growth decreased as prior autumn (September to 
November) precipitation increased. However, growth increased when 
prior winter conditions were wet, similarly to Doñana and Odelouca 
sites. In Ticino, growth decreased in response to warm summer and wet 
prior autumn conditions. 

3.3. Growth responses to climate and drought at the site level 

Correlations of climatic variables with ring-width indices in the five 
ash sites were generally consistent with the modelling results, especially 
for precipitation (Fig. 3, Suppl Mat 1). Specifically, correlations showed 
a significant positive relationship of prior winter and current spring 
precipitation with the Odelouca and Doñana chronologies, and a posi-
tive significant correlation with previous November precipitation. In 
Tudela and Zaragoza, a prior wet autumn increased growth, whilst 
warm-wet conditions in the prior November and a warm December also 
enhanced it in Tudela. In Zaragoza and Ticino, a wet prior-October was 
associated to wider rings. In Ticino, wet conditions associated to mild 
temperatures in July or summer enhanced growth. High spring precip-
itation was also associated to higher growth. 

In terms of growth responses to drought (SPEI), the highest corre-
lations and longest response periods were found in Odelouca (maximum 
r = 0.62, r > 0.55 from April to August at 6- to 14-month SPEI resolu-
tions) and Doñana (maximum r = 0.59, r > 0.55 from April to July at 7- 
to 13-month SPEI resolutions), while Tudela and Zaragoza showed 
lower correlations (Tudela, r = 0.39; Zaragoza, r = 0.40), in the early 
growing season or before (January to April) and at shorter SPEI time-
scales (4–9 months) (Fig. 4). The climatically wettest Ticino site 
exhibited a significant positive correlation of ring-width index with the 
July SPEI (r = 0.55) at short to mid resolutions (2–10 months). 

3.4. Relationships between growth and hydrology at the site level in the 
Ebro and Odelouca rivers 

The Tudela chronology showed positive and significant (p < 0.05) 
correlations with previous winter (December and February), but also 
with summer (June, July) and autumn (September) monthly flow values 
(Fig. 5a). The highest correlations were found for March (r = 0.49, p =
0.003) and August (r = 0.39, p = 0.007). In the driest Zaragoza site (cf. 
Table 1 and Fig. 1), correlations were only significant for winter months, 
specifically December (r = 0.32, p = 0.03) and January (r = 0.35, p =

0.01). The river discharges peaked in the transition from winter to 
spring (Fig. 5a). The annual flow of the Ebro river was significantly and 
positively correlated with the Tudela (r = 0.44, p = 0.002) and Zaragoza 
(r = 0.49, p = 0.001) chronologies (Fig. 5b). However, there were 
evident outliers in the Tudela scatter plot with years such as (e.g., 
1978–1979) showing very high discharges (13,010 Hm3) but narrow 
rings (mean ring-width index 0.78), and years (e.g., 2014–2015) with 
moderate discharges (8875 Hm3) and very wide rings (mean ring-width 
index 1.72). 

In the Odelouca river the chronology showed positive and significant 
(p < 0.05) correlations in the monthly flow values of prior winter 
(November to February), but also from April to July (Fig. 6a). The 
highest correlations were found for prior December (r = 0.64, p =
0.0001), also when monthly river flow peaks (Fig. 6a). The annual flow 
of the Odelouca river was significantly and positively correlated with the 
study site chronology (r = 0.78, p = 0.0001) (Fig. 6b). The maximum 
annual flow corresponded to hydrologic year 1995–1996 (632.683 
Hm3), when the widest rings in this site were formed (mean ring-width 
index 1.49), whilst the lowest values (4.11 Hm3) corresponded to the 
hydrologic year 1980–1981, when narrowest rings were formed (mean 
ring-width index 0.63). 

4. Discussion 

As hypothesized, we found that the growth responses to drought 
(SPEI) of the riparian narrow-leaved ash were stronger in the warmest- 
driest sites (Doñana and Odelouca, with CMI − 0.60 and − 0.43, 
respectively), in terms of climate water balance (CMI), but contrary to 
expected those responses did not peak in the driest sites (Tudela and 
Zaragoza, with lowest values of annual precipitation). In the wettest and 
coolest site (Ticino), the growth response to drought was also notable 
but peaked in summer suggesting a unimodal growth pattern with 
delayed cambial phenology. The growth responses to drought peaked in 
spring in the warmest-driest sites and lasted longer (6 to 14 months), 
suggesting longer growing seasons. However, in the semi-arid Medi-
terranean continental sites from the Ebro basin (Tudela and Zaragoza), 
the growth response to drought peaked in the transition from winter to 
spring and was of moderate duration (from 4 to 9 months). Interestingly, 
this response is similar to tree species response from dry or semi-arid 
nearby sites as Aleppo pine (Pinus halepensis Mill.) whose growth de-
pends on prior winter precipitation that recharges soil moisture depleted 
in late summer (Pasho et al., 2011). This response agrees with functional 
and morphological traits of ash species (e.g., root system), which can 

Table 3 
Standardized estimates of the selected linear mixed-effects models fitted to annual radial growth (basal area increment) data as a function of seasonal climate variables, 
tree age and diameter at breast height (Dbh) in the five study sites. Numbers within parentheses are the standard errors of the estimates. Previous and current-year 
months are abbreviated with lowercase and uppercase letters, respectively. Seasons are abbreviated as follows: son, previous autumn (son, September to November); 
winter (dJF, previous December up to current February); and current spring (MAM, March to May) and summer (JJA, June to August). The last four rows show the 
statistics of the models including the R2

m and R2
c, which correspond to the marginal and conditional R2 values accounting for the variance explained by fixed and fixed 

plus random effects, respectively. Significance levels: *p ≤ 0.05, **p < 0.01, ***p < 0.001.  

Climate variable Season Odelouca Doñana Tudela Zaragoza Ticino 

Temperature son     0.01 (0.01) 
dJF  0.02 (0.01)   − 0.03 (0.01) 
MAM 0.04 (0.02) − 0.12** (0.02) − 0.07** (0.01) − 0.07** (0.01)  
JJA  0.004 (0.01)   − 0.16** (0.02) 

Precipitation son  − 0.01 (0.01)  − 0.07** (0.01) − 0.05** (0.01) 
dJF 0.08** (0.01) 0.05** (0.01)  0.07** (0.01)  
MAM 0.10** (0.01) 0.07** (0.01)  − 0.007 (0.01)        

Age 0.14* (0.06) 0.06 (0.06) 0.19** (0.07) 0.24** (0.04) 0.52** (0.07) 
Dbh 0.67** (0.08) 0.51** (0.06) 0.32** (0.05) 0.44** (0.05) 0.41** (0.06) 
R2

m 0.40 0.28 0.28 0.53 0.63 
R2

c 0.50 0.30 0.56 0.56 0.85 
AICc 20841.55 19205.13 18551.75 17665.88 16864.06 
BIC 20931.78 19312.67 18749.31 17881.25 17072.39  
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explain a coupling to hydroclimate conditions and reduced growth re-
sponses to groundwater variations (Dufour and Piégay, 2008). Never-
theless, the long-term discharge data available for these two sites of the 
Ebro basin and also for the Odelouca site illustrated that narrow-leaved 
ash growth positively responded to monthly flow during the flow peak, 
from December to March, which allows replenishing shallow soil water 
reserves of these riparian forests. Interestingly, the responses were 
stronger in Tudela and Odelouca than in Zaragoza and extended to the 
late growing season (summer and early autumn) in the first site and to 
the early growing season in Odelouca (spring and early summer). These 
findings indicate that Tudela and Odelouca trees are better coupled with 
the river hydrological regime than Zaragoza individuals, a pattern 
observed in other riparian trees in Mediterranean regions, such as Pop-
ulus trichocarpa, in California (Stromberg and Patten, 1996). It also 
agrees with the better conservation status (free-flowing not affected by 
regulation) of the fluvial reaches harbouring both Tudela floodplain 
forests (Ayerra, 1988; Ollero, 1990, González et al., 2012) and Odelouca 
riparian forests (Rodríguez-González et al., 2014). Furthermore, these 
results are consistent with a study from two rivers in central Spain where 
narrow-leaved ash growth was found to be favoured by spring and 
summer river flow (González Muñoz et al., 2015). 

The findings reported agree with our current knowledge on ash 
species phenology such as common ash, whose first earlywood vessels 
start to enlarge before budburst and cambial division resumes after 
budburst (Funada and Catesson, 1991; Frankenstein et al., 2005; Sass- 
Klaassen et al., 2011; Klesse et al., 2020). In another Mediterranean 
ash species, the manna ash (Fraxinus ornus L.), cambial cell production 
started in early March, before buds were swollen, and ceased in mid-July 
(Gričar et al., 2020). Our climate- and drought-growth correlation an-
alyses suggest that in Ticino, the wettest and coolest site, the high rates 
of latewood produced in July point to a unimodal growth pattern. On the 
other hand, in the warmest sites of Odelouca and Doñana the peak 
growth rates were reached in April, with the possibility of a minor peak 
(bimodal growth pattern) after the summer (Camarero et al. 2010, 
Campelo et al. 2018). In Odelouca, the growth peak near the vernal 
equinox could be a safety mechanism to ensure low growth rates during 
the summer drought (Vieira et al. 2020), while the maximum growth 
rates around the summer solstice in Ticino could be to take full advan-
tage of the long days and water availability. In both cases, these growth 
rates would be controlled by soil water availability and drought indi-
cating a plastic phenology of the narrow-leaved ash across its distribu-
tion range, regardless of the different hydrological settings which were 

Fig. 3. Relationships between climate and ring-width 
indices developed for the five study sites for the 
common period (1970–2009). Bars show Pearson 
correlations calculated between seasonal and monthly 
climate variables (mean temperature and total pre-
cipitation) and mean series of ring-width indices. 
Correlations were calculated from prior to current 
September (months abbreviated by lowercase letters 
correspond to the year prior to tree-ring formation). 
Dashed and dotted horizontal lines show the 0.05 and 
0.01 significance levels, respectively.   
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considered in this study. In the Ebro river sites, growth was highly 
correlated to prior winter precipitation causing a mid-term response to 
early growing-season droughts. This indicates a stronger coupling to 
regional climate conditions, which was buffered in the Tudela site where 
growth responds to changes in the winter river discharge. Nonetheless, 
the outliers in the scatter between annual discharge and ring-width 
indices observed when plotting Tudela data indicate that growth was 
also uncoupled from the river hydrological regime, perhaps because of 
local microclimate conditions or biotic interactions, including pests or 
defoliators, which can depend on the flood regime (Verheyde and Sioen, 
2019). The Ebro river is regulated since the 1960s (González et al., 
2012), so growth-discharge uncoupling could be linked to site factors 
since they were not observed in the Zaragoza site, despite both Tudela 
and Zaragoza sites are similarly impacted by regulation of the hydro-
logical regime. Remarkably, the youngest trees were found in the Zar-
agoza site, confirming its higher local anthropogenic disturbance 
intensity related to several land-use drivers affecting European rivers 
(urban expansion, agricultural conversion, building of local river 
breakwaters; see Belletti et al., 2020). In the study sites, ash trees 
competed with other species (poplars, oaks, alder, elm) and in some 
sites, as Zaragoza and Tudela, coexisted with young elm trees affected by 
Dutch elm disease (J.J. Camarero, pers. observ.). In this regard, the 

analyses at the individual level emphasized the effect of tree size on 
growth rates, albeit we missed relevant local information such as 
competition with neighbouring trees, microtopography, soil depth or 
distance to the active river channel (Rodríguez-González et al., 2017). 
For example, the absence of regular floods has been reported to benefit 
upland species, which may outcompete ash in more shaded and dense 
stands (Janík et al., 2016). On the other hand, channel-floodplain an-
thropic disconnections could make ash more drought sensitive and 
dependent on local precipitation. In addition, individual- and site-level 
analyses showed opposite results in some case as the associations be-
tween prior autumn conditions and growth in Zaragoza. This could be 
due to the use of different responses variables (BAI vs. ring-width 
indices) or to the strengthening of some climate signals when aver-
aging individual series and using mean site series (chronologies). Our 
individual-level analyses also illustrated the relevance of cool-wet con-
ditions in the prior winter and current spring as positive drivers of radial 
growth in most sites, except the wettest Ticino floodplain forest. Finally, 
some features of ash radial growth such as vessel size have been found, 
in other regions, to depend on other climate factors than precipitation 
such as prior winter temperatures (Zhu et al., 2020), pointing out for the 
need of further research, incorporating anatomical traits in studies about 
Mediterranean narrow-leaved ash populations. 

Fig. 4. Correlations calculated between monthly SPEI values and mean series of ash ring-width indices for the five study sites considering 1–24 monthly resolution (x 
axes) and months of the growth year (y axes). The significance levels are shown near the color scale. 
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4.1. Management implications for Mediterranean riparian forests 

Mediterranean floodplain forests are endangered habitats with a 
great ecological importance showing high biodiversity levels and 
providing multiple ecosystem services (improving water quality, miti-
gating flood effects, formation of fertile soils, etc.), far beyond the land 
area they occupy. These make floodplain forests of high conservation 
priority in Europe (European Commission, 2013), yet their conservation 
status is unfavourable to bad, particularly in the Mediterranean Region 
(EEA, 2015) 

The narrow-leaved ash is dominant ash in floodplains of the Medi-
terranean basin, with a relatively large ecological spectrum from active 
channel to floodplain, to terrace, and from wetland (i.e. lentic) to river 
(i.e. lotic) habitats; thus, it is a potentially very appealing species for 
conservation and restoration actions in the context of climate change as 
a foundation species modulating recovery of the riparian ecosystem. 
However, our results indicate that ongoing global warming could 
impose additional growth reduction and threaten the survival of some 
narrow-leaved ash stands notably those located in dry, warm sites. Given 
the projected warming and drying trends and more intense pressure on 
hydric resources in the Mediterranean Basin (García-Ruiz et al., 2011), 
these riparian forests should be protected, managed or restored 
considering their increasing coupling to regional climate conditions but 
uncoupling from altered hydrological regimes (this study). Our findings 
provide ecological information on Fraxinus angustifolia requirements, 

necessary considerations in either a passive restoration approach based 
in promoting ecological processes for allowing natural recovery (Bee-
chie et al., 2010), or in active strategies which should project spatial 
distribution of riparian species across the riverbank topographic 
gradient (Magdaleno et al., 2014), as potential distribution shifts may be 
expected in a context of increased aridification (Gomes Marques et al., 
2018). 

Projected climate aridification (García-Ruiz et al., 2011) and hy-
drological alteration (Belletti et al., 2020) will increase vulnerability as a 
result of interaction with several biotic threats affecting forests world-
wide. For example, impairment of the natural flow regime has been 
related with ash decline in alluvial forests (Janík et al., 2016), and this 
effect may be exacerbated by competitive pressure by biological in-
vasions (Nadal-Sala et al., 2017). Also, hydroclimatic stress may inten-
sify impact of emerging diseases affecting ash species (Adamcikova 
et al., 2018), with implications at the ecosystem level. In order to 
properly include these multiple stressors into restoration programmes 
(Johnson et al., 2020), future research should integrate biotic and 
abiotic stressors effect (Stella et al., 2019) such as tree-growth and 
water-user performance interactions with biological pressures. 

5. Conclusions 

To conclude, we found diverse growth responses to climate and 
drought across the Mediterranean distribution range of the narrow- 
leaved ash. Overall, growth of this species increased in response to 
wet and cool conditions in the prior winter, and during the growing 
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Fig. 5. The chronologies (mean site ring-width series) of narrow-leaved ash 
from Tudela and Zaragoza sites were positively related to the monthly (a) and 
annual (b) flow of the Ebro river. In the plot (a) bars are Pearson correlations 
and the lines indicate the monthly flows flows (right y axis). Months of the 
previous and current years are abbreviated by lowercase and uppercase letters, 
respectively. Dashed and dotted horizontal lines show the 0.05 and 0.01 sig-
nificance levels, respectively. In the plot (b) the period 1970–2016 with 
available hydrologic data is plotted and different lines correspond to 
different sites. 

Fig. 6. The chronologies (mean site ring-width series) of narrow-leaved ash 
from the Odelouca site were positively related to the monthly (a) and annual (b) 
flow of the Odelouca river. In the plot (a) bars are Pearson correlations and the 
lines indicate the monthly discharges (right y axis). Months of the previous and 
current years are abbreviated by lowercase and uppercase letters, respectively. 
Dashed and dotted horizontal lines show the 0.05 and 0.01 significance levels, 
respectively. In the plot (b) the period 1970–2000 with available hydrologic 
data is plotted. 
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season. The growth loss in response to drought peaked from prior winter 
up to summer and at short to long time resolutions indicating plastic 
responses to local site conditions. Hydrological conditions influenced 
the narrow-leaved ash with high river discharge or flow in the prior 
winter and early spring enhancing radial growth. 
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P.M. Rodríguez-González et al.                                                                                                                                                                                                              

https://doi.org/10.1016/j.foreco.2021.119128
https://doi.org/10.1016/j.foreco.2021.119128
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0005
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0005
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0005
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0010
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0010
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0010
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0015
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0015
http://R-Forge.R-project.org/projects/mumin/
http://R-Forge.R-project.org/projects/mumin/
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0030
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0030
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0030
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0035
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0040
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0040
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0040
https://doi.org/10.1016/j.dendro.2009.12.001
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0055
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0055
https://doi.org/10.1111/j.1469-8137.2009.03073.x
https://doi.org/10.1111/j.1469-8137.2009.03073.x
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0065
https://doi.org/10.1016/j.dendro.2011.01.010
https://doi.org/10.1016/j.dendro.2018.03.001
https://doi.org/10.3390/f9040205
https://doi.org/10.1029/2017JD028200
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0095
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0095
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0095
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0095
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0095
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0100
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0100
https://doi.org/10.1016/j.scitotenv.2018.10.383
https://doi.org/10.1016/j.scitotenv.2018.10.383
https://www.eea.europa.eu/data-and-maps/daviz/conservation-status-of-floodplain-forest-habitats
https://www.eea.europa.eu/data-and-maps/daviz/conservation-status-of-floodplain-forest-habitats
https://www.eea.europa.eu/data-and-maps/daviz/conservation-status-of-floodplain-forest-habitats
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0115
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0115
https://doi.org/10.1016/j.dendro.2005.07.007
https://doi.org/10.1016/j.dendro.2005.07.007
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0130
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0140
http://refhub.elsevier.com/S0378-1127(21)00216-4/h0140


Forest Ecology and Management 490 (2021) 119128

11
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