18,810 research outputs found

    Double-Mode Stellar Pulsations

    Full text link
    The status of the hydrodynamical modelling of nonlinear multi-mode stellar pulsations is discussed. The hydrodynamical modelling of steady double-mode (DM) pulsations has been a long-standing quest that is finally being concluded. Recent progress has been made thanks to the introduction of turbulent convection in the numerical hydrodynamical codes which provide detailed results for individual models. An overview of the modal selection problem in the HR diagram can be obtained in the form of bifurcation diagrams with the help of simple nonresonant amplitude equations that capture the DM phenomenon.Comment: 34 pages, to appear as a chapter in Nonlinear Stellar Pulsation in the Astrophysics and Space Science Library (ASSL), Editors: M. Takeuti & D. Sasselov (prints double column with pstops '2:[email protected](22.0cm,-2cm)[email protected](22.0cm,11.0cm)' in.ps out.ps

    Effect of non-nicotinic moist snuff replacement and lobeline on withdrawal symptoms during 48-h smokeless tobacco deprivation

    Get PDF
    The present study investigated the effects of two herbal components (BACCOFFTM and DIPSTOP ™) of a commercially available smokeless tobacco treatment program for reducing subjective withdrawal symptoms during deprivation. One component, BACCOFF™, is a non-nicotinic chew. The second component, DIPSTOP™, is a liquid containing the alkaloid lobeline, which to some extent mimics peripheral nicotinic effects. All participants (N = 22 males) were placed in four conditions: BACCOFF™ + DIPSTOP™, BACCOFF™ + placebo control, DIPSTOP™ only, and placebo control only. The conditions involved 48 h of deprivation, and subjects were exposed to one condition per week for 4 weeks. Withdrawal measures were taken at baseline, 24 h, and 48 h of deprivation. Individuals were randomly assigned, and conditions were counterbalanced. Results showed that BACCOFF™, as compared with DIPSTOP™, significantly reduced withdrawal symptoms but not craving. These data suggest that behavioral/sensory substitutes’ influence on withdrawal might be routed through the product’s ability to approximate the preferred moist snuff

    Local Isoelectronic Reactivity of Solid Surfaces

    Full text link
    The quantity w^N(r) = ( 1/ k^2 T_el)[partial n(r, T_el) / partial T_el]_(v(r),N) is introduced as a convenient measure of the local isoelectronic reactivity of surfaces. It characterizes the local polarizability of the surface and it can be calculated easily. The quantity w^N(r) supplements the charge transfer reactivity measured e.g. by the local softness to which it is closely related. We demonstrate the applicability and virtues of the function w^N(r) for the example of hydrogen dissociation and adsorption on Pd(100).Comment: RevTeX, 13 pages, 3 figures, to appear in Phys. Rev. Let

    Automorphisms of graphs of cyclic splittings of free groups

    Full text link
    We prove that any isometry of the graph of cyclic splittings of a finitely generated free group FNF_N of rank N≥3N\ge 3 is induced by an outer automorphism of FNF_N. The same statement also applies to the graphs of maximally-cyclic splittings, and of very small splittings.Comment: 22 pages, 5 figures. Small modifications. To appear in Geometriae Dedicat

    Galaxy Mergers at z>1 in the HUDF: Evidence for a Peak in the Major Merger Rate of Massive Galaxies

    Full text link
    We present a measurement of the galaxy merger fraction and number density from observations in the Hubble Ultra Deep Field for 0.5<z<2.5. We fit the combination of broadband data and slitless spectroscopy of 1308 galaxies with stellar population synthesis models to select merging systems based on a stellar mass of >10^10 M_sol. When correcting for mass incompleteness, the major merger fraction is not simply proportional to (1+z)^m, but appears to peak at z_frac~=1.3+-0.4. From this merger fraction, we infer that ~42% of massive galaxies have undergone a major merger since z~1. We show that the major merger number density peaks at z_dens~1.2, which marks the epoch where major merging of massive galaxies is most prevalent. This critical redshift is comparable to the peak of the cosmic star formation rate density, and occurs roughly 2.6 Gyr earlier in cosmic time than the peak in the number density of X-ray selected active galactic nuclei. These observations support an indirect evolutionary link between merging, starburst, and active galaxies.Comment: Accepted to ApJ. 7 pages, 6 figures, 1 table. Uses and includes emulateapj.cls. In the initial submission, Figures 1 and 2 where switche

    Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation

    Full text link
    Statistical DNA models available in the literature are often effective models where the base-pair state only (unbroken or broken) is considered. Because of a decrease by a factor of 30 of the effective bending rigidity of a sequence of broken bonds, or bubble, compared to the double stranded state, the inclusion of the molecular conformational degrees of freedom in a more general mesoscopic model is needed. In this paper we do so by presenting a 1D Ising model, which describes the internal base pair states, coupled to a discrete worm like chain model describing the chain configurations [J. Palmeri, M. Manghi, and N. Destainville, Phys. Rev. Lett. 99, 088103 (2007)]. This coupled model is exactly solved using a transfer matrix technique that presents an analogy with the path integral treatment of a quantum two-state diatomic molecule. When the chain fluctuations are integrated out, the denaturation transition temperature and width emerge naturally as an explicit function of the model parameters of a well defined Hamiltonian, revealing that the transition is driven by the difference in bending (entropy dominated) free energy between bubble and double-stranded segments. The calculated melting curve (fraction of open base pairs) is in good agreement with the experimental melting profile of polydA-polydT. The predicted variation of the mean-square-radius as a function of temperature leads to a coherent novel explanation for the experimentally observed thermal viscosity transition. Finally, the influence of the DNA strand length is studied in detail, underlining the importance of finite size effects, even for DNA made of several thousand base pairs.Comment: Latex, 28 pages pdf, 9 figure

    On the String Consensus Problem and the Manhattan Sequence Consensus Problem

    Full text link
    In the Manhattan Sequence Consensus problem (MSC problem) we are given kk integer sequences, each of length ll, and we are to find an integer sequence xx of length ll (called a consensus sequence), such that the maximum Manhattan distance of xx from each of the input sequences is minimized. For binary sequences Manhattan distance coincides with Hamming distance, hence in this case the string consensus problem (also called string center problem or closest string problem) is a special case of MSC. Our main result is a practically efficient O(l)O(l)-time algorithm solving MSC for k≤5k\le 5 sequences. Practicality of our algorithms has been verified experimentally. It improves upon the quadratic algorithm by Amir et al.\ (SPIRE 2012) for string consensus problem for k=5k=5 binary strings. Similarly as in Amir's algorithm we use a column-based framework. We replace the implied general integer linear programming by its easy special cases, due to combinatorial properties of the MSC for k≤5k\le 5. We also show that for a general parameter kk any instance can be reduced in linear time to a kernel of size k!k!, so the problem is fixed-parameter tractable. Nevertheless, for k≥4k\ge 4 this is still too large for any naive solution to be feasible in practice.Comment: accepted to SPIRE 201
    • …
    corecore