2,681 research outputs found

    X-ray method to study temperature-dependent stripe domains in MnAs/GaAs(001)

    Full text link
    MnAs films grown on GaAs (001) exhibit a progressive transition between hexagonal (ferromagnetic) and orthorhombic (paramagnetic) phases at wide temperature range instead of abrupt transition during the first-order phase transition. The coexistence of two phases is favored by the anisotropic strain arising from the constraint on the MnAs films imposed by the substrate. This phase coexistence occurs in ordered arrangement alternating periodic terrace steps. We present here a method to study the surface morphology throughout this transition by means of specular and diffuse scattering of soft x-rays, tuning the photon energy at the Mn 2p resonance. The results show the long-range arrangement of the periodic stripe-like structure during the phase coexistence and its period remains constant, in agreement with previous results using other techniques.Comment: 4 pages, 4 figures, submitted to Applied Physics Letter

    Magnetic reconfiguration of MnAs/GaAs(001) observed by Magnetic Force Microscopy and Resonant Soft X-ray Scattering

    Full text link
    We investigated the thermal evolution of the magnetic properties of MnAs epitaxial films grown on GaAs(001) during the coexistence of hexagonal/orthorhombic phases using polarized resonant (magnetic) soft X-ray scattering and magnetic force microscopy. The results of the diffuse satellite X-ray peaks were compared to those obtained by magnetic force microscopy and suggest a reorientation of ferromagnetic terraces as temperature rises. By measuring hysteresis loops at these peaks we show that this reorientation is common to all ferromagnetic terraces. The reorientation is explained by a simple model based on the shape anisotropy energy. Demagnetizing factors were calculated for different configurations suggested by the magnetic images. We noted that the magnetic moments flip from an in-plane mono-domain orientation at lower temperatures to a three-domain out-of-plane configuration at higher temperatures. The transition was observed when the ferromagnetic stripe width L is equal to 2.9 times the film thickness d. This is in good agreement with the expected theoretical value of L = 2.6d.Comment: 16 pages in PD

    Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension

    Get PDF
    Falcao-Pires I, Goncalves N, Henriques-Coelho T, Moreira-Goncalves D, Roncon-Albuquerque R Jr, Leite-Moreira AF. Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 296: H2007-H2014, 2009. First published April 3, 2009; doi: 10.1152/ajpheart.00089.2009.-We investigated the endogenous production of apelin and the cardiac and pulmonary effects of its chronic administration in monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Wistar rats were injected with MCT (60 mg/kg sc) or vehicle (day 0). One week later, these animals were randomly treated during 17 days with pyroglutamylated apelin-13 (Pyr-AP13; 200 mu g.kg(-1).day(-1) ip) or a similar volume of saline, resulting in four groups: sham (n = 11), sham-AP (n = 11), MCT (n = 16), and MCT-AP (n = 13). On day 25, right ventricular (RV) and left ventricular (LV) hemodynamic and morphometric parameters were assessed. Tissue and plasma samples were collected for histological and molecular analysis. When compared with sham, the MCT group presented a significant increase of RV mass (166 +/- 38%), diameter of cardiomyocyte (40 +/- 10%), myocardial fibrosis (95 +/- 20%), peak systolic pressure (99 +/- 22%), peak rate of ventricular pressure rise (dP/dt(max); 74 +/- 24%), peak rate of ventricular pressure decline (dP/dt(min); 73 +/- 19%), and time constant tau (55 +/- 16%). In these animals, RV expression of apelin (-73 +/- 10%) and its receptor APJ (-61 +/- 20%) was downregulated, whereas mRNA expression of type B natriuretic peptide (9,606 +/- 713%), angiotensinogen (191 +/- 147%), endothelin-1 (RV, 497 +/- 156%; and LV, 799 +/- 309%), plasmatic levels of apelin (104 +/- 48%), and angiotensin 1-7 (161 +/- 151%) were increased. Chronic treatment with Pyr-AP13 significantly attenuated or normalized these changes, preventing apelin-APJ mRNA downregulation and PH-induced neurohumoral activation of several vasoconstrictors, which exacerbates apelin-APJ vasodilator effects. Therefore, apelin delayed the progression of RV hypertrophy and diastolic dysfunction. Together, these observations suggest that the apelin-APJ system may play an important role in the pathophysiology of PH, representing a potential therapeutic target since it significantly attenuates RV overload and PH-induced neurohumoral activation

    Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors

    Full text link
    Although the quest for more accurate solutions is pushing deep learning research towards larger and more complex algorithms, edge devices demand efficient inference and therefore reduction in model size, latency and energy consumption. One technique to limit model size is quantization, which implies using fewer bits to represent weights and biases. Such an approach usually results in a decline in performance. Here, we introduce a method for designing optimally heterogeneously quantized versions of deep neural network models for minimum-energy, high-accuracy, nanosecond inference and fully automated deployment on chip. With a per-layer, per-parameter type automatic quantization procedure, sampling from a wide range of quantizers, model energy consumption and size are minimized while high accuracy is maintained. This is crucial for the event selection procedure in proton-proton collisions at the CERN Large Hadron Collider, where resources are strictly limited and a latency of O(1) μ{\mathcal O}(1)~\mus is required. Nanosecond inference and a resource consumption reduced by a factor of 50 when implemented on field-programmable gate array hardware are achieved

    J-PLUS: analysis of the intracluster light in the Coma cluster

    Full text link
    The intracluster light (ICL) is a luminous component of galaxy clusters composed of stars that are gravitationally bound to the cluster potential but do not belong to the individual galaxies. Previous studies of the ICL have shown that its formation and evolution are intimately linked to the evolutionary stage of the cluster. Thus, the analysis of the ICL in the Coma cluster will give insights into the main processes driving the dynamics in this highly complex system. Using a recently developed technique, we measure the ICL fraction in Coma at several wavelengths, using the J-PLUS unique filter system. The combination of narrow- and broadband filters provides valuable information on the dynamical state of the cluster, the ICL stellar types, and the morphology of the diffuse light. We use the Chebyshev-Fourier Intracluster Light Estimator (CICLE) to disentangle the ICL from the light of the galaxies, and to robustly measure the ICL fraction in seven J-PLUS filters. We obtain the ICL fraction distribution of the Coma cluster at different optical wavelengths, which varies from ∼7%−21%\sim 7\%-21\%, showing the highest values in the narrowband filters J0395, J0410, and J0430. This ICL fraction excess is distinctive pattern recently observed in dynamically active clusters (mergers), indicating a higher amount of bluer stars in the ICL compared to the cluster galaxies. Both the high ICL fractions and the excess in the bluer filters are indicative of a merging state. The presence of younger/lower-metallicity stars the ICL suggests that the main mechanism of ICL formation for the Coma cluster is the stripping of the stars in the outskirts of infalling galaxies and, possibly, the disruption of dwarf galaxies during past/ongoing mergers.Comment: 10 pages, 3 figures, 1 table. Accepted for publication in A&

    J-PLUS: A wide-field multi-band study of the M15 globular cluster. Evidence of multiple stellar populations in the RGB

    Full text link
    The Javalambre Photometric Local Universe Survey (J-PLUS) provides wide field-of-view images in 12 narrow, intermediate and broad-band filters optimized for stellar photometry. Here we have applied J-PLUS data for the first time for the study of Galactic GCs using science verification data obtained for the very metal-poor GC M\,15. Our J-PLUS data provide low-resolution spectral energy distributions covering the near-UV to the near-IR, allowing us to search for MPs based on pseudo-spectral fitting diagnostics. J-PLUS CMDs are found to be particularly useful to search for splits in the sequences formed by the upper red giant branch (RGB) and asymptotic giant branch (AGB) stars. We interpret these split sequences as evidence for the presence of MPs. This demonstrates that the J-PLUS survey will have sufficient spatial coverage and spectral resolution to perform a large statistical study of GCs through multi-band photometry in the coming years.Comment: 11 pages, 11 figures. Accepted for publication @ A&

    Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli

    Get PDF
    Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems
    • …
    corecore