5,126 research outputs found

    Variational quantum algorithm with information sharing

    Get PDF
    We introduce an optimisation method for variational quantum algorithms and experimentally demonstrate a 100-fold improvement in efficiency compared to naive implementations. The effectiveness of our approach is shown by obtaining multi-dimensional energy surfaces for small molecules and a spin model. Our method solves related variational problems in parallel by exploiting the global nature of Bayesian optimisation and sharing information between different optimisers. Parallelisation makes our method ideally suited to the next generation of variational problems with many physical degrees of freedom. This addresses a key challenge in scaling-up quantum algorithms towards demonstrating quantum advantage for problems of real-world interest

    Disposition of Federally Owned Surpluses

    Get PDF
    PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions

    M-theory and Seven-Dimensional Inhomogeneous Sasaki-Einstein Manifolds

    Full text link
    Seven-dimensional inhomogeneous Sasaki-Einstein manifolds Yp,k(KE4)Y^{p,k}(KE_4) present a challenging example of AdS/CFT correspondence. At present, their field theory duals for KE4=CP2KE_4=\mathbb{CP}^2 base are proposed only within a restricted range 3p/2≤k≤2p3p/2\le k \le 2p as N=2{\cal N}=2 quiver Chern-Simons-matter theories with SU(N)×SU(N)×SU(N)SU(N)\times SU(N)\times SU(N) gauge group, nine bifundamental chiral multiplets interacting through a cubic superpotential. To further elucidate this correspondence, we use particle approximation both at classical and quantum level. We setup a concrete AdS/CFT mapping of conserved quantities using geodesic motions, and turn to solutions of scalar Laplace equation in Yp,kY^{p,k}. The eigenmodes also provide an interesting subset of Kaluza-Klein spectrum for D=11D=11 supergravity in AdS4×Yp,k{\rm AdS}_4\times Y^{p,k}, and are dual to protected operators written in terms of matter multiplets in the dual conformal field theory.Comment: v2 refs added. 19 pages 1 figur

    Fate of the Josephson effect in thin-film superconductors

    Full text link
    The dc Josephson effect refers to the dissipationless electrical current -- the supercurrent -- that can be sustained across a weak link connecting two bulk superconductors. This effect is a probe of the fundamental nature of the superconducting state. Here, we analyze the case of two superconducting thin films connected by a point contact. Remarkably, the Josephson effect is absent at nonzero temperature, and the resistance across the contact is nonzero. Moreover, the point contact resistance is found to vary with temperature in a nearly activated fashion, with a UNIVERSAL energy barrier determined only by the superfluid stiffness characterizing the films, an angle characterizing the geometry, and whether or not the Coulomb interaction between Cooper pairs is screened. This behavior reflects the subtle nature of the superconductivity in two-dimensional thin films, and should be testable in detail by future experiments.Comment: 16 + 8 pages. 1 figure, 1 tabl

    Interim prostacyclin therapy for an isolated disconnected pulmonary artery: a case report

    Get PDF
    Introduction: Disconnected pulmonary arteries are unusual and may result in pulmonary hypertension with acute right heart failure. Case presentation: We report a case of a three-month-old Asian girl who presented with heart failure and severe pulmonary hypertension due to a disconnected right pulmonary artery. An epoprostenol (prostacyclin) infusion was instrumental in lowering pulmonary artery pressures and stabilizing the child prior to surgery. Conclusions: This is, to the best of our knowledge, the first report of successful prostacyclin usage in such a situation.peer-reviewe

    Instanton operators in five-dimensional gauge theories

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are creditedN.L. is supported in part by STFC grant ST/J002798/1. C.P. is a Royal Society Research Fellow.N.L. is supported in part by STFC grant ST/J002798/1. C.P. is a Royal Society Research Fellow.N.L. is supported in part by STFC grant ST/J002798/1. OPen Aceess funded by SCOAP

    Metal-insulator transition in vanadium dioxide nanobeams: probing sub-domain properties of strongly correlated materials

    Full text link
    Many strongly correlated electronic materials, including high-temperature superconductors, colossal magnetoresistance and metal-insulator-transition (MIT) materials, are inhomogeneous on a microscopic scale as a result of domain structure or compositional variations. An important potential advantage of nanoscale samples is that they exhibit the homogeneous properties, which can differ greatly from those of the bulk. We demonstrate this principle using vanadium dioxide, which has domain structure associated with its dramatic MIT at 68 degrees C. Our studies of single-domain vanadium dioxide nanobeams reveal new aspects of this famous MIT, including supercooling of the metallic phase by 50 degrees C; an activation energy in the insulating phase consistent with the optical gap; and a connection between the transition and the equilibrium carrier density in the insulating phase. Our devices also provide a nanomechanical method of determining the transition temperature, enable measurements on individual metal-insulator interphase walls, and allow general investigations of a phase transition in quasi-one-dimensional geometry.Comment: 9 pages, 3 figures, original submitted in June 200

    Quantum delocalized interactions

    Get PDF
    Classical mechanics obeys the intuitive logic that a physical event happens at a definite spatial point. Entanglement, however, breaks this logic by enabling interactions without a specific location. In this work we study these delocalized interactions. These are quantum interactions that create less locational information than would be possible classically, as captured by the disturbance induced on some spatial superposition state. We introduce quantum games to capture the effect and demonstrate a direct operational use for quantum concurrence in that it bounds the nonclassical performance gain. We also find a connection with quantum teleportation, and demonstrate the games using an IBM quantum processor
    • …
    corecore