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Classical mechanics obeys the intuitive logic that a physical event happens at a definite spatial
point. Entanglement however, breaks this logic by enabling interactions without a specific location.
In this work we study these delocalised-interactions. These are quantum interactions that create
less locational information than would be possible classically, as captured by the disturbance in-
duced on some spatial superposition state. We introduce quantum games to capture the effect and
demonstrate a direct operational use for quantum concurrence in that it bounds the non-classical
performance gain. We also find a connection with quantum teleportation, and demonstrate the
games using an IBM quantum processor.

Entanglement lies at the heart of the differences be-
tween classical and quantum physics. Studying its im-
plications has repeatedly reshaped our understanding of
what nature fundamentally allows [1]. In addition to
its role in quantum foundations, entanglement is nec-
essary for several types of non-classical advantage [2–4]
and provides the archetypal quantum resource theory [5].
For specific tasks, certain entangled states provide non-
classical advantage while others do not. Based on this,
entanglement can be divided into different levels of hier-
archies, such as steering [6, 7] and Bell non-locality [8].
Interestingly, this fundamentally motivated hierarchy has
connections to quantum cryptography [9], with corre-
sponding levels of security for entanglement [10], steer-
ing [11], and Bell non-locality [12, 13].

A key method for studying particular aspects of en-
tanglement is to consider non-local games, where en-
tanglement can provide a non-classical advantage. The
archetypal example is the game constructed from the
Clauser-Horne-Shimony-Holt (CHSH) test [14]. In this
CHSH game, Charlie passes two random classical bits
x, y ∈ {0, 1} to Alice and Bob respectively. Without
communicating to each other, Alice and Bob must se-
lect and send back bits a, b ∈ {0, 1} respectively, and
they win the game if a ⊕ b = x · y, where ⊕ denotes
addition modulo 2. The best classical strategy gives a
win probability of 0.75, but using entangled quantum
resources they can win with the maximum probabil-
ity 1

2 (1 + 1√
2
) ≈ 0.85. Defining and studying games

where entanglement provides non-classical performance
has been key to improving our understanding of entan-
glement [15–27], since these games neatly encapsulate the
often counter-intuitive consequences for information pro-
cessing governed by the laws of quantum mechanics.

In this work, we study quantum delocalised-
interactions, whereby information encoded using non-
locally superposed quantum states, is recorded via local
interactions whilst causing less disturbance than would
be classically possible. This indicates that such inter-
actions cannot be said to happen at a single location.
This stands in stark contrast to our classical intuition

that interactions happen at unique places, we just might
not know where. This non-classical phenomenon has in
fact been instrumental in enabling certain quantum pro-
tocols [28, 29].

In order to characterise delocalised interactions quan-
titatively, we formulate quantum games and study two
particular instances. We establish that the win probabil-
ities of these games are upper bounded in terms of the
concurrence for two-qubit states [30, 31], and the bounds
can be saturated for any pure state and a broad class of
mixed states. This provides an operational meaning of
the concurrence, which has been a widely studied mea-
sure of entanglement but is often viewed as a mathemat-
ical device. We find that the capacity for non-classical
teleportation fidelity [32] guarantees the capacity for non-
classical performance in a delocalised-interaction game.
We also demonstrate the games using an IBM quantum
processor, achieving non-classical performance.
Double slit – First we illustrate what we mean by

delocalised-interactions using the familiar double slit
thought experiment. Suppose a game where Charlie (C)
either sends a particle through the double slit or does
not. Alice (A) standing at one slit together with Bob
(B) standing at the other, team up to guess whether
C sent the particle or not, without destroying the in-
terference pattern. To win this game, A and B should
be able to distinguish between two different states pass-
ing through the double-slit, namely a vacuum state |0〉
and a superposition between spatially separated states
|ψL〉 + |ψR〉, by locally interacting with the particle.
Note these states can also be written as |00〉ApBp

and
1√
2
(|10〉ApBp

+ |10〉ApBp
), where Ap and Bp are the par-

ticle Fock spaces at A and B’s locations. If A and B
only share classical resources, a perfect record of the ex-
istence of the particle is impossible due to the comple-
mentarity principle of quantum mechanics. There will be
a trade-off, the more information A and B locally record
on whether a particle is present, the more they destroy
the interference between the different paths by disturb-
ing the superposition state |ψL〉+|ψR〉 [33]. On the other
hand, if A and B share copies of a Bell state, for example,
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FIG. 1. Schematic illustration of the quantum delocalised-interaction games as described in the main text, with ρ′ApBp
denoting

the final state returned to C, and ρ
′(z)
AB denoting the final state obtained by A and B, which they measure to determine their

guess for z. The sets of question states used for the PNP game and the BD game are presented at the top.

|Φ+〉AB = 1√
2
(|00〉 + |11〉)AB , then they can produce a

perfect record of when there were particles without af-
fecting the interference pattern. To do this, A and B
set up their local interactions such that the particle flips
the local state as |0〉A(B)|1〉Ap(Bp) → |1〉A(B)|1〉Ap(Bp)

and |1〉A(B)|1〉Ap(Bp) → |0〉A(B)|1〉Ap(Bp), while the local
states remain the same when the particle is not present.
Under this interaction, the resulting joint state evolves
as |Φ+〉AB(|ψL〉 + |ψR〉) → 1√

2
(|01〉 + |10〉)AB(|ψL〉 +

|ψR〉) = |Ψ+〉AB(|ψL〉+|ψR〉) when C sent the particle or
|Φ+〉AB |0〉 → |Φ+〉AB |0〉 when C does not send the par-
ticle. The interference patterns of the particle have not
been disturbed and A and B will have a perfect record
of the existence of the particle as their shared outcome
states |Φ+〉AB and |Ψ+〉AB are perfectly distinguishable.

As illustrated in the double-slit experiment, entangle-
ment allows us to overcome the trade-off between “in-
formation gain via local interaction” and “disturbance
in non-local superposition” i.e., recording information
encoded using non-locally superposed quantum states,
via local interactions whilst causing less disturbance
than would be classically possible. We term this phe-
nomenon delocalised-interactions, as the interaction can-
not be known to have definitely happened at either A or
B’s location, since this would destroy the non-local su-
perposition. We proceed to construct a formal quantum
game to quantitatively capture the advantage of shar-
ing entanglement between A and B when demonstrating
delocalised-interactions.

Quantum delocalised-interaction games – We formulate
general quantum delocalised-interaction games as follows
(illustrated in Fig. 1)

1. C prepares a state |z〉ApBp
selected from some finite

set of question states Z with non-zero probability
Pz, and sends the subsystems Ap and Bp to A and
B, respectively.

2. A and B attempt to record the information z onto
their shared state ρAB via local controlled unitaries
UAAp and VBBp , then return the subsystemsAp and
Bp to C.

3. C checks whether the returned subsystems ApBp
have been disturbed by performing a projective
measurement onto the initial state |z〉ApBp

.

4. A and B perform joint measurements Π
(za)
AB to de-

termine their answer za.

5. A and B win the game if their answer is correct
za = z, and C’s projective measurement returns
the initial state |z〉ApBp

.

The question states must not be chosen such that A and
B cannot distinguish them, and at least one |z〉ApBp ∈
Z must be entangled. This condition ensures that the
games capture the classical trade-off which a quantum
delocalised-interaction circumvents.

The probability that A and B win the game is given as

p(ρAB) =
∑
z

PzTr
[
(Π

(z)
AB ⊗ |z〉〈z|)W (ρAB ⊗ |z〉〈z|)W †

]
,

(1)
where W = UAAp

⊗ VBBp
. We shall use the superscript

form pm to denote the maximum of this quantity over all
choices of measurements ΠAB and controlled unitaries
UAAp , VBBp , and we shall use subscripts to distinguish
specific instances.

Particle/No-Particle game – The double-slit scenario
can now be simplified into an example of a quan-
tum delocalised-interaction game. In this case, Z =
{|p〉, |np〉} with Pp = 1/2 = Pnp and we take |p〉 =
1√
2
(|01〉ApBp

+ |10〉ApBp
), and |np〉 = |00〉ApBp

, which

represent the states after passing the double-slit depend-
ing on whether C sends (p) or does not send (np) the
particle.
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We also choose to work with the interaction only hap-
pening if the particle exists in the local subsystem, since
a unitary in the absence of a particle physically cor-
responds to free evolution which we can simply factor
out. Hence UAAp

= 1A ⊗ |0〉Ap
〈0| + UA ⊗ |1〉Ap

〈1| and
VBBp

= 1B ⊗ |0〉Bp
〈0|+ VB ⊗ |1〉Bp

〈1|. The overall inter-
action then can be written as

W = 1AB ⊗ |00〉ApBp〈00|+ UA ⊗ 1B ⊗ |10〉ApBp〈10|
+ 1A ⊗ VB ⊗ |01〉ApBp〈01|+ UA ⊗ VB ⊗ |11〉ApBp〈11|.

(2)

We refer to this game as the Particle/No-Particle
(PNP) game and we find that the maximum obtainable
win probability for a pure two-qubit state is given as

pmpnp(|ψ〉AB) =
3

4
+

1

4
C(|ψ〉AB), (3)

where C(|ψ〉AB) = 2
√
λ0λ1 with λi denoting the Schmidt

coefficients, is the well-known concurrence entanglement
monotone [30, 31] (proof in Ref. [34]), which is zero for all
separable states, giving the classical bound as 3

4 . We can
therefore view the game as providing a direct operational
meaning of pure state concurrence.

This result has interesting implications, for instance
one might have thought that A and B would be helped
by allowing a pre-processing step where they have tem-
porary access to all the states they will use, and can
apply entanglement distillation. However, using the con-
currence result we can show that this would not increase
their win probability. Consider A and B granted pre-
processing access to N copies of the qubit state |ψ〉,
from which they distil m copies of the maximally en-
tangled state and N − m pure separable states. Then
when the game starts they use these new states one by
one, and win m cases with probability 1 and N − m
cases with the maximum classical win probability 3

4 .
It is known that in the asymptotic limit of large N
we have m = NE(|ψ〉), where E(|ψ〉) is the entan-
glement entropy [35]. This means the win probability
for the outlined distillation strategy will be bounded by
1
N [NE(|ψ〉)+ 3

4 (N−NE(|ψ〉)] = 3
4+ 1

4E(|ψ〉). However by
using the original states they would obtain 3

4 + 1
4C(|ψ〉),

and it is known that C(|ψ〉) ≥ E(|ψ〉). Therefore the dis-
tillation does not provide improvement.

To generalise Eq. (3) to mixed states we use the fact
that the maximum win probability is a convex function
pm(

∑
i riρ

(i)) ≤
∑
i rip

m(ρ(i)), which can be intuitively
understood as follows. Consider A and B being either
given copies of a known state

∑
i riρ

(i), or given labelled
copies of known states ρ(i) where the number of each
is in proportion to ri. From the second case they can
reproduce the first case by simply ignoring the labels,
therefore in the second case they must be able to obtain
at least as high a win probability as in the first case,
hence the convexity result. Using this, combined with the

fact that C(ρAB) = inf
∑
i qiC(|ψi〉AB), we can extend

Eq. (3) to a bound for mixed states, giving

pmpnp(ρAB) ≤ 3

4
+
C(ρAB)

4
. (4)

Since the concurrence has an analytic closed form, we
can now easily calculate a bound on the win probability
gain for any two-qubit state.

From this we can also view the game as providing a di-
rect operational meaning of concurrence for mixed states
that saturate the bound. It is therefore natural to ask
whether the bound can be tight for mixed states. The
answer is yes, as we found that it saturates for mixtures
of two Bell states [34]. However, this is not true for
all mixed states. An informative example is given by
Werner-like states [36] ρAB = a|ψk〉AB〈ψk| + 1−a

4 1AB ,
where 0 ≤ a ≤ 1 and |ψk〉 is chosen as one of the four
Bell states. We shall show that this state does not satu-
rate the concurrence bound.

To understand and prove this behaviour we note that
the mixedness of a state can degrade its record quality.
Consider the extreme example of the maximally mixed
state 1AB/n. It is clear that if A and B try to unitarily
encode the presence of a particle in this state then they
will not gain information. This inability of the state to
acquire information is what we intuitively mean when
we say it has bad record quality. We capture the general
effect via the bound

pmpnp(ρAB) ≤ 1

2
+

1

2
Tc(λ

↑, λ↓), (5)

where we denote the classical trace distance Tc(p, q) =
1
2

∑
i |pi− qi| for probability vectors p, q defined over the

same index set, and λ↑ is the vector of eigenvalues of
ρ arranged in ascending order and including any zero
values. For the 1AB/n example, we see that the win
probability cannot exceed 1

2 , i.e., the best they can do
is just guess. The proof of the bound proceeds via the
lemma T (ρ, σ) ≤ Tc(λ

↑, µ↓), where µ↓ is the vector of
eigenvalues of σ in descending order (see Ref. [34] for
details).

Returning to the Werner-like states, we find that this
record quality bound can be saturated. This can be
demonstrated with UA = XA = |0〉A〈1| + |1〉A〈0|, and
VB = ±XB , where the sign is chosen to match the sign
of 〈ψk|XAXB |ψk〉. This gives ppnp = 1

2 (1 + a), which
exactly saturates the record bound and is therefore an
optimal tactic. This record bound is below the concur-
rence bound for all a < 1, and therefore the Werner-like
states do not saturate the concurrence bound.

Since the Werner-like state is entangled for a > 1
3 ,

these results indicate that entanglement is not sufficient
to observe nonclassical advantage in the PNP quantum
game. Additionally we note that the capacity for Bell
non-locality is not necessary for a state to demonstrate
non-classical performance, since there is a local model



4

for projective measurements for a . 0.66 [39]. We note
that this appears to hold even if we allow A and B to use
additional pure classical states (see [34] for details).

Bell distinguishing game – We now study a modified
game that indicates an even stronger connection with
concurrence. In the PNP game considered above, the no
particle state |np〉 = |00〉ApBp

, has no spatial superposi-
tion which can be damaged by the local measurements.
To move away from this, we can consider replacing
|00〉ApBp

, with the Bell state |Φ+〉ApBp
= 1√

2
(|00〉ApBp

+

|11〉ApBp). So Alice and Bob are now tasked with distin-
guishing two Bell states |Ψ+〉 and |Φ+〉 whilst trying to
return them undamaged. We shall refer to this as the
Bell-Distinguishing (BD) game. It is noteworthy that
this task can be viewed as detecting local bit-flip errors,
where in contrast to a conventional syndrome measure-
ment [40] one is using two ancilla modes, each of which
can only interact with its local part of the system.

For two-qubit states we again find that the concurrence
quantifies the maximum obtainable win probability [34],
via

pmbd(|ψ〉AB) =
1

2
+

1

2
C(|ψ〉AB), (6)

and thus we have the general bound

pmbd(ρAB) ≤ 1

2
+

1

2
C(ρAB). (7)

Unlike for the PNP game, Werner-like states can sat-
urate the concurrence bound, and in fact we find that
the well studied Bell diagonal states [41–46] can all
saturate the bound. In order to prove this, we note
that there exists a tactic with win probability at least
equal to the fully entangled fraction (singlet fraction)
F(ρ) = maxψ〈ψ|ρ|ψ〉, where the maximum is taken over
all maximally entangled states of the system. A and B
can achieve this by adopting the optimal tactic for the
maximally entangled pure state |ψ∗〉 = arg maxψ〈ψ|ρ|ψ〉.
Since all entangled Bell diagonal states have concurrence
C(ρ) = 2F(ρ) − 1, so the tactic outlined above leads to
pbd(ρ) = 1

2 + 1
2C(ρ) thus saturating the bound.

The above outlined tactic also produces an inter-
esting corollary regarding quantum teleportation [32],
namely that all entangled two-qubit states capable of
non-classical teleportation fidelity are also capable of
non-classical performance in the BD game, since it is
known that a two-qubit state can achieve non-classical
teleportation fidelity if and only if F > 1

2 [47, 48]. It
would be an interesting open question to study whether
the converse statement is true. We conjecture that this
might be the case by numerically verifying that exam-
ples of entangled two-qubit states with F < 1

2 [49] do
not show non-classical BD performance.

IBM machine demonstration– We tested the
delocalised-interaction games using the IBM super-
conducting quantum processor Paris. We implemented

Ψ + Φ + Total0.0

0.2

0.4

0.6

0.8

1.0

W
in

 P
ro

ba
bi

lit
y

Max classical win prob.
Entangled
Separable

FIG. 2. Plot of results for the BD game, calculated from Paris
device measurements. The total win probability is calculated
for equal probability of sending either state. The blue bars are
for an entangled initial resource state, the red for separable,
and the green line is the maximum classical win probability.

both the BD and PNP games by initially sharing a Bell
state between A and B and by employing controlled
bit flips as local interaction unitary operators (for
details see Ref. [34]). A key simplifying aspect of this
approach is that A and B do not have to perform a
joint measurement at the end to determine their answer.
The two possible states are 1√

2
(|00〉AB + |11〉AB) and

1√
2
(|01〉AB + |10〉AB), so they can simply measure in the

local Z basis and base their answer on the joint parity of
their results. Therefore they only require LOCC rather
than joint measurements.

The results for the BD game are illustrated in Fig. 2,
where alongside the results for the entangled initial state,
we include results for the separable initial state |00〉 for
comparison. The entangled win probability achieved was
0.71, which is far from the ideal but violates the classical
limit of 0.5. This demonstrates a usable concurrence of
0.42 and thus a convincing delocalised-interaction. For
the standard PNP game we could not demonstrate non-
classical performance, but altering the game by increas-
ing the probability a particle is sent Pp, we were able to
establish non-classical performance, although we cannot
currently relate this violation directly to an entanglement
measure (details in Ref. [34]).

Note that this is not an ideal demonstration of
delocalised-interactions. Imperfections in the device’s be-
haviour could in principle be used to account for the non-
classical result. Delocalised-interactions are subject to
the usual loopholes that plague demonstrations of non-
local effects [50]. Potentially these could be addressed by
future experiments with photonic qubits [51].

Conclusions– In this work we studied the concept of
delocalised-interactions. Information encoded using non-
locally superposed quantum states, is recorded via local
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interactions whilst disturbing the superposition less than
would be classically possible. This phenomenon has in-
teresting foundational implications regarding events not
requiring unique locations and has also been a key com-
ponent for certain quantum protocols [28, 29]. In order to
systematically study this quantum effect, we introduced
and investigated quantum games for which non-classical
performance demonstrates delocalised-interactions. This
enabled us to prove a direct operational use of concur-
rence in bounding the non-classical win probabilities, and
a connection with quantum teleportation. Our work can
spur further research building from the tools and ideas
introduced here, such as generalising to higher dimen-
sions or multipartite settings, and establishing the exact
nature of the connection with quantum teleportation.
Finally, the delocalised-interaction games were demon-
strated on an IBM superconducting quantum processor,
finding non-classical performance.
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[13] A. Aćın, N. Brunner, N. Gisin, S. Massar, S. Pironio, and
V. Scarani, Physical Review Letters 98, 230501 (2007).

[14] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Physical review letters 23, 880 (1969).

[15] R. Cleve, P. Hoyer, B. Toner, and J. Watrous, in Proceed-
ings. 19th IEEE Annual Conference on Computational
Complexity, 2004. (IEEE, 2004) pp. 236–249.

[16] F. Buscemi, Physical review letters 108, 200401 (2012).
[17] C. Branciard, D. Rosset, Y.-C. Liang, and N. Gisin,

Physical review letters 110, 060405 (2013).
[18] O. Regev and T. Vidick, ACM Transactions on Compu-

tation Theory (ToCT) 7, 15 (2015).
[19] T. Fritz, Reviews in Mathematical Physics 24, 1250012

(2012).
[20] V. Russo and J. Watrous, arXiv preprint

arXiv:1709.01837 (2017).
[21] N. Johnston, R. Mittal, V. Russo, and J. Watrous, Pro-

ceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 472, 20160003 (2016).

[22] A. Molina and J. Watrous, Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences
468, 2614 (2012).

[23] I. Dinur and D. Steurer, in Proceedings of the forty-sixth
annual ACM symposium on Theory of computing (ACM,
2014) pp. 624–633.

[24] T. Cooney, M. Junge, C. Palazuelos, and D. Pérez-
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