46 research outputs found

    Biotic and abiotic retention, recycling and remineralization of metals in the ocean

    Get PDF
    Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals

    Distribution and symmetrical patellofemoral pain patterns as revealed by high-resolution 3D body mapping:a cross-sectional study

    Get PDF
    Abstract Background Detailed pain mapping of extent and distribution in individuals with patellofemoral pain (PFP) within and around a complex structure such as the knee has yet to be explored. Methods Perceptions of on-going pain from adolescents and young adults (N = 35) with long-standing (>10 months) PFP were collected on high-resolution 3D digital body-schema of the knees. Location, area of pain, pain intensity, laterality, worse side of knee pain, symptom duration, and symmetry in bilateral knee pain were recorded. A threshold for naturally occurring variations in symmetrical knee pain drawings were collected from 18 healthy controls and used in combination with the development a symmetry index (0–1) to create a fuzzy rule for classifying symmetrical and non-symmetrical PFP patterns as compared to a PFP expert. The symmetry index was computed and tested using a correlation coefficient alone or in combination with the Jaccard index and the true and false positive rates (TPR and FPR, respectively) determined. Results The peripatellar region was the common report of pain location however, novel and nonconforming PFP patterns were identified and the majority of individuals (22 of 27) with bilateral PFP expressed highly-symmetric mirror-image pain. Individuals with symptom duration of 5 years or more had a greater area of pain, compared to those with symptoms for less than 5 years. The total area of pain was correlated to symptom duration for those with extended symptoms durations and a progression towards an “O” shaped pattern emerged. A TPR of 100% for identifying symmetrical knee pain patterns was found however the expert PFP tended to be stricter, as reflected in FPR of 20%. Conclusions A high proportion of PFP patterns or symptoms occur in mirrored locations and are exceptionally symmetrical, and long duration of symptoms appear to converge to an ‘O’ shape. Classifying symmetrical pain patterns is subjective however simple fuzzy rules and correlations can be used to increase objectivity. This study highlights a gap in knowledge of PFP symptom presentation, reveals what may be a natural progression of symptoms, and provides valuable clinical insight for both pain management and treatment

    Factors influencing sedentary behaviours after stroke:Findings from qualitative observations and interviews with stroke survivors and their caregivers

    Get PDF
    Background Stroke survivors are more sedentary than healthy, age-matched controls, independent of functional capacity. Interventions are needed to encourage a reduction in overall sedentary time, and regular breaks in prolonged periods of sedentary behaviour. This study captured the views and experiences of stroke survivors and their caregivers related to sedentary behaviour after stroke, to inform the development of an intervention to reduce sedentary behaviour. Methods Mixed-methods qualitative study. Non-participant observations were completed in two stroke services, inclusive of inpatient and community settings in the United Kingdom. Semi-structured interviews were conducted with stroke survivors and their caregivers (if available) at six- or nine-months post-stroke. Underpinned by the capability, opportunity and motivation (COM-B) model of behaviour change, observational data (132 h) were analysed thematically and interview data (n = 31 stroke survivors, n = 12 caregivers) were analysed using the Framework approach. Results Observation participants differed in functional ability whereas stroke survivor interviewees were all ambulant. Six themes related to sedentary behaviour after stroke were generated: (1) sedentary behaviour levels and patterns after stroke; (2) the physical and social environment in the stroke service and in the home; (3) standing and movement capability after stroke; (4) emotion and motivation after stroke; (5) caregivers’ influence on, and role in influencing stroke survivors’ sedentary behaviour; and (6) intervening to reduce sedentary behaviour after stroke. Capability, opportunity and motivation were influenced by the impact of the stroke and caregivers’ inclination to support sedentary behaviour reduction. Stroke survivors reported being more sedentary than they were pre-stroke due to impaired balance and co-ordination, increased fatigue, and reduced confidence in mobilising. Caregivers inclination to support stroke survivors to reduce sedentary behaviour depended on factors including their willingness to withdraw from the caregiver role, and their perception of whether the stroke survivor would act on their encouragement. Conclusions Many stroke survivors indicate being open to reducing sedentary behaviour, with appropriate support from stroke service staff and caregivers. The findings from this study have contributed to an intervention development process using the Behaviour Change Wheel (BCW) approach to develop strategies to reduce sedentary behaviour after stroke

    Resupply of mesopelagic dissolved iron controlled by particulate iron composition

    Get PDF
    The dissolved iron supply controls half of the oceans’ primary productivity. Resupply by the remineralization of sinking particles, and subsequent vertical mixing, largely sustains this productivity. However, our understanding of the drivers of dissolved iron resupply, and their influence on its vertical distribution across the oceans, is still limited due to sparse observations. There is a lack of empirical evidence as to what controls the subsurface iron remineralization due to difficulties in studying mesopelagic biogeochemistry. Here we present estimates of particulate transformations to dissolved iron, concurrent oxygen consumption and iron-binding ligand replenishment based on in situ mesopelagic experiments. Dissolved iron regeneration efficiencies (that is, replenishment over oxygen consumption) were 10- to 100-fold higher in low-dust subantarctic waters relative to higher-dust Mediterranean sites. Regeneration efficiencies are heavily influenced by particle composition. Their make-up dictates ligand release, controls scavenging, modulates ballasting and may lead to the differential remineralization of biogenic versus lithogenic iron. At high-dust sites, these processes together increase the iron remineralization length scale. Modelling reveals that in oceanic regions near deserts, enhanced lithogenic fluxes deepen the ferricline, which alter the vertical patterns of dissolved iron replenishment, and set its redistribution at the global scale. Such wide-ranging regeneration efficiencies drive different vertical patterns in dissolved iron replenishment across oceanic provinces

    Evidence That Two ATP-Dependent (Lon) Proteases in Borrelia burgdorferi Serve Different Functions

    Get PDF
    The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH2-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host

    Application of divergent multi-component reactions in the synthesis of a library of peptidomimetics based on Îł-amino-α,ÎČ-cyclopropyl acids

    No full text
    The multi-component condensation of organozirconocene, aldimine and zinc carbenoid was applied to the stereoselective synthesis of cyclopropane amino acid derivatives. These compounds served as scaffolds for the preparation of a 46-member library. The C- and N-termini of the cyclopropane amino acid derivatives were diversified by condensations with ten amines and ten acylating agents, respectively. To improve yields and accelerate library synthesis, most products were prepared under microwave irradiation and purified by polymer-bound scavengers and SPE methodology. All compounds were analyzed by LC-MS and a representative selection was fully characterized. © 2005 Elsevier Ltd. All rights reserved

    Silicon and zinc biogeochemical cycles coupled through the Southern Ocean

    Get PDF
    Zinc is vital for the physiology of oceanic phytoplankton. The striking similarity of the depth profiles of zinc to those of silicate suggests that the uptake of both elements into the opaline frustules of diatoms, and their regeneration from these frustules, should be coupled. However, the zinc content of diatom opal is negligible, and zinc is taken up into and regenerated from the organic parts of diatom cells. Thus, since opaline frustules dissolve deep in the water column while organic material is regenerated in the shallow subsurface ocean, there is little reason to expect the observed close similarity between zinc and silicate, and the dissimilarity between zinc and phosphate. Here we combine observations with simulations using a three-dimensional model of ocean circulation and biogeochemistry to show that the coupled distribution of zinc and silicate, as well as the decoupling of zinc and phosphate, can arise in the absence of mechanistic links between the uptake of zinc and silicate, and despite contrasting regeneration length scales. Our simulations indicate that the oceanic zinc distribution is, in fact, a natural result of the interaction between ocean biogeochemistry and the physical circulation through the Southern Ocean hub. Our analysis demonstrates the importance of uptake stoichiometry in controlling ocean biogeochemistry, and the utility of global-scale elemental covariation in the ocean in understanding these controls
    corecore