127 research outputs found
Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses
Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response
The Effect of a DNA Repair Gene on Cellular Invasiveness: Xrcc3 Over-Expression in Breast Cancer Cells
Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3) and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion
Appropriate DevR (DosR)-Mediated Signaling Determines Transcriptional Response, Hypoxic Viability and Virulence of Mycobacterium tuberculosis
Background: The DevR(DosR) regulon is implicated in hypoxic adaptation and virulence of Mycobacterium tuberculosis. The present study was designed to decipher the impact of perturbation in DevR-mediated signaling on these properties. Methodology/Principal Findings: M. tb complemented (Comp) strains expressing different levels of DevR were constructed in Mut1 * background (expressing DevR N-terminal domain in fusion with AphI (DevRN-Kan) and in Mut2DdevR background (deletion mutant). They were compared for their hypoxia adaptation and virulence properties. Diverse phenotypes were noted; basal level expression (,5.362.3 mM) when induced to levels equivalent to WT levels (,25.869.3 mM) was associated with robust DevR regulon induction and hypoxic adaptation (Comp 9 * and 10*), whereas low-level expression (detectable at transcript level) as in Comp 11 * and Comp15 was associated with an adaptation defect. Intermediate-level expression (,3.361.2 mM) partially restored hypoxic adaptation functions in Comp2, but not in Comp1 * bacteria that coexpressed DevRN-Kan. Comp * strains in Mut1 * background also exhibited diverse virulence phenotypes; high/very low-level DevR expression was associated with virulence whereas intermediate-level expression was associated with low virulence. Transcription profiling and gene expression analysis revealed up-regulation of the phosphate starvation response (PSR) in Mut1 * and Comp11 * bacteria, but not in WT/Mut2DdevR/other Comp strains, indicating a plasticity in expression pathways that is determined by the magnitude of signaling perturbation through DevRN-Kan
Social Perceptions of Forest Ecosystem Services in the Democratic Republic of Congo
The forests of the Albertine Rift are known for their high biodiversity and the important ecosystem services they provide to millions of inhabitants. However, their conservation and the maintenance of ecosystem service delivery is a challenge, particularly in the Democratic Republic of the Congo. Our research investigates how livelihood strategy and ethnicity affects local perceptions of forest ecosystem services. We collected data through 25 focus-group discussions in villages from distinct ethnic groups, including farmers (Tembo, Shi, and Nyindu) and hunter-gatherers (Twa). Twa identify more food-provisioning services and rank bush meat and honey as the most important. They also show stronger place attachment to the forest than the farmers, who value other ecosystem services, but all rank microclimate regulation as the most important. Our findings help assess ecosystem services trade-offs, highlight the important impacts of restricted access to forests resources for Twa, and point to the need for developing alternative livelihood strategies for these communities
Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems
This study investigated telomeric array organization of diverse chicken genotypes utilizing in vivo and in vitro cells having phenotypes with different proliferation potencies. Our experimental objective was to characterize the extent and nature of array variation present to explore the hypothesis that mega-telomeres are a universal and fixed feature of chicken genotypes. Four different genotypes were studied including normal (UCD 001, USDA-ADOL Line 0), immortalized (DF-1), and transformed (DT40) cells. Both cytogenetic and molecular approaches were utilized to develop an integrated view of telomeric array organization. It was determined that significant variation exists within and among chicken genotypes for chromosome-specific telomeric array organization and total genomic-telomeric sequence content. Although there was variation for mega-telomere number and distribution, two mega-telomere loci were in common among chicken genetic lines (GGA 9 and GGA W). The DF-1 cell line was discovered to maintain a complex derivative karyotype involving chromosome fusions in the homozygous and heterozygous condition. Also, the DF-1 cell line was found to contain the greatest amount of telomeric sequence per genome (17%) as compared to UCD 001 (5%) and DT40 (1.2%). The chicken is an excellent model for studying unique and universal features of vertebrate telomere biology, and characterization of the telomere length variation among genotypes will be useful in the exploration of mechanisms controlling telomere length maintenance in different cell types having unique phenotypes
CodonTest: Modeling Amino Acid Substitution Preferences in Coding Sequences
Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models. However, these approaches have been limited by the necessity for large alignments in their estimation. An alternative approach is to assume that substitution rates between amino acid pairs can be subdivided into rate classes, dependent on the information content of the alignment. However, given the combinatorially large number of such models, an efficient model search strategy is needed. Here we develop a Genetic Algorithm (GA) method for the estimation of such models. A GA is used to assign amino acid substitution pairs to a series of rate classes, where is estimated from the alignment. Other parameters of the phylogenetic Markov model, including substitution rates, character frequencies and branch lengths are estimated using standard maximum likelihood optimization procedures. We apply the GA to empirical alignments and show improved model fit over existing models of codon evolution. Our results suggest that current models are poor approximations of protein evolution and thus gene and organism specific multi-rate models that incorporate amino acid substitution biases are preferred. We further anticipate that the clustering of amino acid substitution rates into classes will be biologically informative, such that genes with similar functions exhibit similar clustering, and hence this clustering will be useful for the evolutionary fingerprinting of genes
Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors
<p>Abstract</p> <p>Background</p> <p>The Ras-dependent ERK1/2 MAP kinase signaling pathway plays a central role in cell proliferation control and is frequently activated in human colorectal cancer. Small-molecule inhibitors of MEK1/MEK2 are therefore viewed as attractive drug candidates for the targeted therapy of this malignancy. However, the exact contribution of MEK1 and MEK2 to the pathogenesis of colorectal cancer remains to be established.</p> <p>Methods</p> <p>Wild type and constitutively active forms of MEK1 and MEK2 were ectopically expressed by retroviral gene transfer in the normal intestinal epithelial cell line IEC-6. We studied the impact of MEK1 and MEK2 activation on cellular morphology, cell proliferation, survival, migration, invasiveness, and tumorigenesis in mice. RNA interference was used to test the requirement for MEK1 and MEK2 function in maintaining the proliferation of human colorectal cancer cells.</p> <p>Results</p> <p>We found that expression of activated MEK1 or MEK2 is sufficient to morphologically transform intestinal epithelial cells, dysregulate cell proliferation and induce the formation of high-grade adenocarcinomas after orthotopic transplantation in mice. A large proportion of these intestinal tumors metastasize to the liver and lung. Mechanistically, activation of MEK1 or MEK2 up-regulates the expression of matrix metalloproteinases, promotes invasiveness and protects cells from undergoing anoikis. Importantly, we show that silencing of MEK2 expression completely suppresses the proliferation of human colon carcinoma cell lines, whereas inactivation of MEK1 has a much weaker effect.</p> <p>Conclusion</p> <p>MEK1 and MEK2 isoforms have similar transforming properties and are able to induce the formation of metastatic intestinal tumors in mice. Our results suggest that MEK2 plays a more important role than MEK1 in sustaining the proliferation of human colorectal cancer cells.</p
Visualizing Interactions along the Escherichia coli Twin-Arginine Translocation Pathway Using Protein Fragment Complementation
The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways
Traditional knowledge and cultural importance of Borassus aethiopum Mart. in Benin: interacting effects of socio-demographic attributes and multi-scale abundance
ResearchBackground: Eliciting factors affecting distribution of traditional knowledge (TK) and cultural importance of plant
resources is central in ethnobiology. Socio-demographic attributes and ecological apparency hypothesis (EAH) have
been widely documented as drivers of TK distribution, but their synergistic effect is poorly documented. Here, we
focused on Borassus aethiopum, a socio-economic important agroforestry palm in Africa, analyzing relationships
between the number of use-reports and cultural importance on one hand, and informant socio-demographic
attributes (age category and gender) on the other hand, considering the EAH at multi-scale contexts. Our
hypothesis is that effects of socio-demographic attributes on use-reports and cultural importance are shaped by
both local (village level) and regional (chorological region level) apparency of study species. We expected so
because distribution of knowledge on a resource in a community correlates to the versatility in the resource
utilization but also connections among communities within a region.
Methods: Nine hundred ninety-two face-to-face individual semi-structured interviews were conducted in six villages of
low versus high local abundance of B. aethiopum spanning three chorological regions (humid, sub-humid and semiarid)
also underlying a gradient of increasing distribution and abundance of B. aethiopum. Number of use-reports and
score of importance of uses of B. aethiopum were recorded in six use-categories including medicine, food, handcraft,
construction, firewood, and ceremonies and rituals. Data were analyzed using Poisson and ordered logistic modelsinfo:eu-repo/semantics/publishedVersio
Identification of gene targets against dormant phase Mycobacterium tuberculosis infections
<p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects approximately 2 billion people worldwide and is the leading cause of mortality due to infectious disease. Current TB therapy involves a regimen of four antibiotics taken over a six month period. Patient compliance, cost of drugs and increasing incidence of drug resistant <it>M. tuberculosis </it>strains have added urgency to the development of novel TB therapies. Eradication of TB is affected by the ability of the bacterium to survive up to decades in a dormant state primarily in hypoxic granulomas in the lung and to cause recurrent infections.</p> <p>Methods</p> <p>The availability of <it>M. tuberculosis </it>genome-wide DNA microarrays has lead to the publication of several gene expression studies under simulated dormancy conditions. However, no single model best replicates the conditions of human pathogenicity. In order to identify novel TB drug targets, we performed a meta-analysis of multiple published datasets from gene expression DNA microarray experiments that modeled infection leading to and including the dormant state, along with data from genome-wide insertional mutagenesis that examined gene essentiality.</p> <p>Results</p> <p>Based on the analysis of these data sets following normalization, several genome wide trends were identified and used to guide the selection of targets for therapeutic development. The trends included the significant up-regulation of genes controlled by <it>devR</it>, down-regulation of protein and ATP synthesis, and the adaptation of two-carbon metabolism to the hypoxic and nutrient limited environment of the granuloma. Promising targets for drug discovery were several regulatory elements (<it>devR/devS</it>, <it>relA</it>, <it>mprAB</it>), enzymes involved in redox balance and respiration, sulfur transport and fixation, pantothenate, isoprene, and NAD biosynthesis. The advantages and liabilities of each target are discussed in the context of enzymology, bacterial pathways, target tractability, and drug development.</p> <p>Conclusion</p> <p>Based on our bioinformatics analysis and additional discussion of in-depth biological rationale, several novel anti-TB targets have been proposed as potential opportunities to improve present therapeutic treatments for this disease.</p
- …
