135 research outputs found

    How do women feel cold water swimming affects their menstrual and perimenopausal symptoms?

    Get PDF
    Objective. This study aimed to determine how women felt cold water swimming affected their menstrual and perimenopausal symptoms. Study design. An online survey that asked women who regularly swim in cold water about their experiences. The survey was advertised for 2 months on social media. Questions related to cold water swimming habits and menstrual and perimenopausal symptoms were analysed. Main outcome measures Quantitative and qualitative data including; frequency of menstrual and menopause symptoms, the effect of cold water swimming on these symptoms. Results. 1114 women completed the survey. Women reported that cold water swimming reduced their menstrual symptoms, notably psychological symptoms such as anxiety (46.7%), mood swings (37.7%) and irritability (37.6%). Perimenopausal women reported a significant improvement in anxiety (46.9%), mood swings (34.5%), low mood (31.1%) and hot flushes (30.3%). The majority of women with symptoms swam specifically to reduce these symptoms (56.4% for period and 63.3% for perimenopause symptoms). Women said they felt it was the physical and mental effects of the cold water that helped their symptoms. For the free text question, five themes were identified: the calming and mood-boosting effect of the water, companionship and community, period improvements, an improvement in hot flushes and an overall health improvement. Conclusion. Women felt that cold water swimming had a positive overall effect on menstrual and perimenopause symptoms. Studies on other forms of exercise to relieve menstrual and perimenopause symptoms may show similar findings

    Delineation of prognostic biomarkers in prostate cancer

    Full text link
    Prostate cancer is the most frequently diagnosed cancer in American men(1,2). Screening for prostate-specific antigen (PSA) has led to earlier detection of prostate cancer(3), but elevated serum PSA levels may be present in non-malignant conditions such as benign prostatic hyperlasia (BPH). Characterization of gene-expression profiles that molecularly distinguish prostatic neoplasms may identify genes involved in prostate carcinogenesis, elucidate clinical biomarkers, and lead to an improved classification of prostate cancer(4-6). Using microarrays of complementary DNA, we examined gene-expression profiles of more than 50 normal and neoplastic prostate specimens and three common prostate-cancer cell lines. Signature expression profiles of normal adjacent prostate (NAP), BPH, localized prostate cancer, and metastatic, hormone-refractory prostate cancer were determined. Here we establish many associations between genes and prostate cancer. We assessed two of these genes-hepsin, a transmembrane serine protease, and pim-1, a serine/threonine kinase-at the protein level using tissue microarrays consisting of over 700 clinically stratified prostate-cancer specimens. Expression of hepsin and pim-1 proteins was significantly correlated with measures of clinical outcome. Thus, the integration of cDNA microarray, high-density tissue microarray, and linked clinical and pathology data is a powerful approach to molecular profiling of human cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62849/1/412822a0.pd

    A blueprint for a simultaneous test of quantum mechanics and general relativity in a space-based quantum optics experiment

    Get PDF
    In this paper we propose an experiment designed to observe a general-relativistic effect on single photon interference. The experiment consists of a folded Mach-Zehnder interferometer, with the arms distributed between a single Earth orbiter and a ground station. By compensating for other degrees of freedom and the motion of the orbiter, this setup aims to detect the influence of general relativistic time dilation on a spatially superposed single photon. The proposal details a payload to measure the required effect, along with an extensive feasibility analysis given current technological capabilities

    AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping

    Get PDF
    Background: Computer-based phenotyping of plants has risen in importance in recent years. Whilst much software has been written to aid phenotyping using image analysis, to date the vast majority has been only semi-automatic. However, such interaction is not desirable in high throughput approaches. Here, we present a system designed to analyse plant images in a completely automated manner, allowing genuine high throughput measurement of root traits. To do this we introduce a new set of proxy traits. Results: We test the system on a new, automated image capture system, the Microphenotron, which is able to image many 1000s of roots/h. A simple experiment is presented, treating the plants with differing chemical conditions to produce different phenotypes. The automated imaging setup and the new software tool was used to measure proxy traits in each well. A correlation matrix was calculated across automated and manual measures, as a validation. Some particular proxy measures are very highly correlated with the manual measures (e.g. proxy length to manual length, r2 > 0.9). This suggests that while the automated measures are not directly equivalent to classic manual measures, they can be used to indicate phenotypic differences (hence the term, proxy). In addition, the raw discriminative power of the new proxy traits was examined. Principal component analysis was calculated across all proxy measures over two phenotypically-different groups of plants. Many of the proxy traits can be used to separate the data in the two conditions. Conclusion: The new proxy traits proposed tend to correlate well with equivalent manual measures, where these exist. Additionally, the new measures display strong discriminative power. It is suggested that for particular phenotypic differences, different traits will be relevant, and not all will have meaningful manual equivalent measures. However, approaches such as PCA can be used to interrogate the resulting data to identify differences between datasets. Select images can then be carefully manually inspected if the nature of the precise differences is required. We suggest such flexible measurement approaches are necessary for fully automated, high throughput systems such as the Microphenotron

    Pilot study evaluating the effects of an intervention to enhance culturally appropriate hypertension education among healthcare providers in a primary care setting

    Get PDF
    Background: To improve hypertension care for ethnic minority patients of African descent in the Netherlands, we developed a provider intervention to facilitate the delivery of culturally appropriate hypertension education. This pilot study evaluates how the intervention affected the attitudes and perceived competence of hypertension care providers with regard to culturally appropriate care.Methods: Pre- and post-intervention questionnaires were used to measure the attitudes, experienced barriers, and self-reported behaviour of healthcare providers with regard to culturally appropriate cardiovascular and general care at three intervention sites (N = 47) and three control sites (N = 35).Results: Forty-nine participants (60%) completed questionnaires at baseline (T0) and nine months later (T1). At T1, healthcare providers who received the intervention found it more important to consider the patient's culture when delivering care than healthcare providers who did not receive the intervention (p = 0.030). The intervention did not influence ex

    Self-force: Computational Strategies

    Full text link
    Building on substantial foundational progress in understanding the effect of a small body's self-field on its own motion, the past 15 years has seen the emergence of several strategies for explicitly computing self-field corrections to the equations of motion of a small, point-like charge. These approaches broadly fall into three categories: (i) mode-sum regularization, (ii) effective source approaches and (iii) worldline convolution methods. This paper reviews the various approaches and gives details of how each one is implemented in practice, highlighting some of the key features in each case.Comment: Synchronized with final published version. Review to appear in "Equations of Motion in Relativistic Gravity", published as part of the Springer "Fundamental Theories of Physics" series. D. Puetzfeld et al. (eds.), Equations of Motion in Relativistic Gravity, Fundamental Theories of Physics 179, Springer, 201

    The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    Get PDF
    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability

    Cost-effectiveness of a structured progressive task-oriented circuit class training programme to enhance walking competency after stroke: The protocol of the FIT-Stroke trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most patients who suffer a stroke experience reduced walking competency and health-related quality of life (HRQoL). A key factor in effective stroke rehabilitation is intensive, task-specific training. Recent studies suggest that intensive, patient-tailored training can be organized as a circuit with a series of task-oriented workstations.</p> <p>Primary aim of the FIT-Stroke trial is to evaluate the effects and cost-effectiveness of a structured, progressive task-oriented circuit class training (CCT) programme, compared to usual physiotherapeutic care during outpatient rehabilitation in a rehabilitation centre. The task-oriented CCT will be applied in groups of 4 to 6 patients. Outcome will be defined in terms of gait and gait-related ADLs after stroke. The trial will also investigate the generalizability of treatment effects of task-oriented CCT in terms of perceived fatigue, anxiety, depression and perceived HRQoL.</p> <p>Methods/design</p> <p>The multicentre single-blinded randomized trial will include 220 stroke patients discharged to the community from inpatient rehabilitation, who are able to communicate and walk at least 10 m without physical, hands-on assistance. After discharge from inpatient rehabilitation, patients in the experimental group will receive task-oriented CCT two times a week for 12 weeks at the physiotherapy department of the rehabilitation centre. Control group patients will receive usual individual, face-to-face, physiotherapy. Costs will be evaluated by having each patient keep a cost diary for the first 24 weeks after randomisation. Primary outcomes are the mobility part of the Stroke Impact Scale (SIS-3.0) and the EuroQol. Secondary outcomes are the other domains of SIS-3.0, lower limb muscle strength, walking endurance, gait speed, balance, confidence not to fall, instrumental ADL, fatigue, anxiety, depression and HRQoL.</p> <p>Discussion</p> <p>Based on assumptions about the effect of intensity of practice and specificity of treatment effects, FIT-Stroke will address two key aims. The first aim is to investigate the effects of task-oriented CCT on walking competency and HRQoL compared to usual face-to-face physiotherapy. The second aim is to reveal the cost-effectiveness of task-oriented CCT in the first 6 months post stroke. Both aims were recently recommended as priorities by the American Hearth Association and Stroke Council.</p> <p>Trial registration</p> <p>This study is registered in the Dutch Trial Register as NTR1534.</p
    • …
    corecore