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SOFTWARE

AutoRoot: open-source software 
employing a novel image analysis approach 
to support fully-automated plant phenotyping
Michael P. Pound1, Susan Fozard2, Mercedes Torres Torres1, Brian G. Forde2 and Andrew P. French1,3*

Abstract 

Background: Computer-based phenotyping of plants has risen in importance in recent years. Whilst much software 
has been written to aid phenotyping using image analysis, to date the vast majority has been only semi-automatic. 
However, such interaction is not desirable in high throughput approaches. Here, we present a system designed to 
analyse plant images in a completely automated manner, allowing genuine high throughput measurement of root 
traits. To do this we introduce a new set of proxy traits.

Results: We test the system on a new, automated image capture system, the Microphenotron, which is able to image 
many 1000s of roots/h. A simple experiment is presented, treating the plants with differing chemical conditions to 
produce different phenotypes. The automated imaging setup and the new software tool was used to measure proxy 
traits in each well. A correlation matrix was calculated across automated and manual measures, as a validation. Some 
particular proxy measures are very highly correlated with the manual measures (e.g. proxy length to manual length, 
r2 > 0.9). This suggests that while the automated measures are not directly equivalent to classic manual measures, 
they can be used to indicate phenotypic differences (hence the term, proxy). In addition, the raw discriminative power 
of the new proxy traits was examined. Principal component analysis was calculated across all proxy measures over 
two phenotypically-different groups of plants. Many of the proxy traits can be used to separate the data in the two 
conditions.

Conclusion: The new proxy traits proposed tend to correlate well with equivalent manual measures, where these 
exist. Additionally, the new measures display strong discriminative power. It is suggested that for particular phe-
notypic differences, different traits will be relevant, and not all will have meaningful manual equivalent measures. 
However, approaches such as PCA can be used to interrogate the resulting data to identify differences between 
datasets. Select images can then be carefully manually inspected if the nature of the precise differences is required. 
We suggest such flexible measurement approaches are necessary for fully automated, high throughput systems such 
as the Microphenotron.
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Background
Phenotyping is the process of measuring features or traits 
of a plant’s appearance. This appearance is affected by 
the plant’s growth characteristics (as determined by its 
genome) and the effect of the environment (such as stress 

factors or nutrient availability); quantifying the phe-
nome is therefore our gateway into understanding these 
hidden factors. In recent years, the field of software-
assisted phenotyping for plants has advanced tremen-
dously [1–3]. The need to measure more traits from plant 
images, using larger and more varied image datasets 
has driven the need to develop more resilient computer 
vision algorithms to assist with this process [4–6]. Tasks 
such as measuring architectural traits from images are 
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extremely labour intensive, yet computationally challeng-
ing to completely automate. Approaches to date largely 
semi-automate the process (e.g. [7, 8]). This leverages the 
expert-biologist’s knowledge of the domain to guide a 
computer algorithm, which can take care of the low-level 
processing, making the biologist’s job easier—but not 
removing user involvement entirely.

The problems of shoot and root phenotyping present 
distinct challenges, as such many tools are developed 
with a focus on roots specifically. For truly automated 
phenotyping, bottom-up approaches are the most com-
mon. GiaRoots [9], EzRhizo [10], WinRhizo and RootRea-
der2D are notable examples. These often apply a low level 
binary classification operation such as local or global 
thresholding, to determine which pixels correspond to 
root material, and which to background. The benefit of 
assigning labels to pixels in this way is that broad quanti-
tative measures of root systems can be calculated quickly. 
Measurements such as inferred rootmass, width, tortuos-
ity etc., are easily computed on binary images. However, 
it is often challenging to perform this thresholding in the 
presence of noisy images, and large amounts of process-
ing can be required to clean up the signal, for example 
by removing anomalously-detected foreground pixels. In 
those cases where the removal process is not perfect, the 
resultant trait values become flawed. It is commonly held 
that this low-level error can be overcome by increasing 
the size of the dataset, something that can be done trivi-
ally in automated systems. This approach undoubtedly 
has merit, but the extent to which this is true in practice 
will often be a function of the input images, and of the 
traits being measured; care must be taken.

More recently, methods that adopt a machine learn-
ing approach to quantifying the images (e.g. [11–13]), 
have grown in popularity. Learning algorithms are able 
to effectively adapt parameters based on a training image 
set. However, they require an initial training phase on a 
new image set before they can be used. To generate the 
training data, an expert must label the data by hand to 
provide suitable ground truth data for learning.

Processing power is increasingly in demand for these 
approaches, as the image analysis methods become more 
and more complex. This is especially true with recent 
deep learning approaches [14, 15], which can require sub-
stantial GPU-based hardware systems to train the com-
plex networks in a feasible time. Other, more traditional 
image analysis software can still make heavy demands 
on processing power. Online frameworks are available 
to help take some of the processing power requirements 
of these algorithms away from the user, and simplify the 
processing pipeline (e.g. the iPlant Collaborative Project 
[16]). Still, despite helping with raw processing power and 
providing a consistent user interface—both important 

requirements for successful real-world use of software—
the underlying algorithms still require research and 
development to become fully automatic.

To adopt a fully automated phenotyping approach, any 
software must fulfil particular criteria. Once running it 
should not make any demands on the user; all images in 
the set must be processed in one go, as a batch. Previous 
software has taken this approach (e.g. [17]), requiring 
the user to provide some details to the software initially, 
but after that period, batch processing proceeds through 
an entire set of images. However, it is still beneficial to 
perform manual visual checking of the final results, to 
confirm whether the images have been successfully pro-
cessed. At some point, though, this approach becomes 
infeasible. With the introduction of more capable robot-
ics enabling very high throughput image capture, it 
becomes challenging to verify that all the results are satis-
factory. We need to ask the software to either place a con-
fidence in the measured results, or provide results which 
are inherently probabilistic. To say a root is 32.6 mm long 
requires much certainty on behalf of the software and 
developers, and the degree of this certainty is often not 
addressed in automated software. To say root A is longer 
than root B may be just as valuable, yet requires a looser 
set of processing requirements.

The software itself should run sufficiently fast so as to 
keep up with throughput of the image capture, or at least 
be able to batch process results offline and in time for the 
arrival of the next batch. With typical phenotyping stud-
ies requiring 1000s of images (e.g. [18]) the issue of pro-
cessing speed is becoming increasingly important. This is 
the motivation behind the approach presented here. We 
propose a system designed explicitly to work with images 
generated in a high throughput manner using a robotic 
capture system. The software does not require pre-train-
ing per image set, as image capture settings are able to be 
kept consistent as part of the imaging setup. Processing 
requirements are sufficiently small that an image can be 
processed in a few seconds on a standard PC (i.e. faster 
than the rate of image capture). User interaction is not 
required during processing, and results are automatically 
generated.

The nature of the results is such that the necessity to 
manually validate the results is minimized; we propose 
measures in the next section which implicitly handle the 
inherent uncertainty in most image analysis approaches. 
To achieve automated phenotyping with measurable 
reliability, a new set of proxy measurement traits are 
proposed, described here. Traditional manual phenotyp-
ing involves measuring visible features of a plant using 
tools such as a ruler or protractor. Despite appearances, 
even these measurements are not certain; and at some 
degree of accuracy are always incorrect. Implicit in such 
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measurements is an error: a user can only read a meas-
urement to a certain level of accuracy, for example, or 
may miscount the number of leaves or lateral roots etc. 
Despite the error, we often consider such measures as a 
‘ground truth’ or gold standard; that is, they represent a 
direct measure of the trait which we often consider to be 
error-free. Statistical methods applied to measurement 
data will reveal variations in measurement accuracy, but 
are considered post-measurement, rather than during 
the measurement process itself. The same is true of auto-
mated image analysis tools—thresholding applies a hard 
root or no root label to each pixel, which is sensitive to 
noise and lighting [19], and there is often little indication 
of the relative error on a particular image.

Our approach, built here into the new AutoRoot soft-
ware, differs from traditional root analysis tools by first 
making no firm judgement as to the location of root pix-
els—i.e. a thresholding approach is not used. A shortest 
path-based approach instead measures the confidence 
that a given pixel is part of the root system, and to which 
plant it belongs. It is these confidences that drive our 
phenotypic measurements. In essence, each trait is calcu-
lated based on where the root material is likely to be. We 
will demonstrate that the new traits we propose to meas-
ure correlate well with typical manual measures, and can 
be used as further input in analysis approaches (such as 
clustering or more advanced machine learning based 
techniques) without any further interpretation neces-
sary. We also show the measures are able to separate two 
experimental growth conditions in a new high through-
put imaging setup, in a completely automated manner. 
We believe that these proposed probabilistic proxy traits, 
have application in automated phenotyping where meas-
urement of direct traditional traits is challenging, or not 
possible.

Implementation
Images of roots and shoots of Arabidopsis seedlings were 
acquired using an automated image capture system called 
the Microphenotron [20]. Briefly, the seedlings were 
grown in agar-filled ‘phytostrips’, which are transpar-
ent plastic growth devices that are comprised of a strip 
of eight  flat-sided growth vessels. Growth conditions 
and nutrient media were as described by Forde et  al. 
[21]. The internal distance from the front to the back of 
each growth vessel is 2 mm, obliging the root system to 
develop in an essentially 2-D conformation to facilitate 
imaging and image analysis. Images of the phytostrips are 
captured robotically, such that each image contains eight 
wells of seedlings. The precision of the robotic manipu-
lation, combined with the physical boundaries of the 
growth vessel, places definite limits on where the plant 
material can be found in the image. In our system we use 

this consistency to limit our search for root material to 
these wells, however the methods we propose here would 
work equally well on larger images. Hereafter, where we 
discuss image analysis approaches, we are referring to the 
contents of a single well, and this process is repeated for 
the number of wells in the input image.

Images are prepared by first converting to greyscale, 
before contrast is increased by performing a contrast 
stretching operation. This maps a range of intensity val-
ues representing the background and foreground pixels, 
into the full 8-bit grayscale range of 0–255 intensity lev-
els. In practice, this has the effect of increasing the grey-
level distance between the foreground and background, 
improving the confidence measures that are calculated 
next. The Microphenotron has very consistent lighting 
environment, and as such these values are easily deter-
mined once before being applied to all images. It is not 
necessary to perform an adaptive method, such as his-
togram normalisation. We tested a histogram normali-
sation approach which redistributes grey levels in the 
image such that a small percentage of pixels are satu-
rated at either the minimum zero value, or the maximum 
greyscale value. We found, however, that for dense root 
systems, histogram normalisation would produce insuffi-
cient contrast, spreading the intensity levels of root pixels 
over the full range, rather than significantly brightening 
them.

Rather than performing a binary threshold, which 
assigns a 100% confidence value to each pixel’s classifica-
tion, we aim to calculate a ‘likelihood’ that any given pixel 
belongs to the root system. We begin by locating numer-
ous candidate root locations within a horizontal strip 
at the top of each image well. The height of this strip is 
5% of the well height. Seeds are planted above this posi-
tion in all images we have encountered. This is done by 
finding local intensity maxima (pixels brighter than their 
neighbours) by scanning across each pixel row. These 
positions act as points at which we are confident there 
is root material, and thus points well connected to these 
will have a high likelihood of also being root.

These candidate points are used to initiate a Dijkstra’s 
shortest path search [22] through all pixels in the well. 
Dijkstra’s algorithm will find the shortest path between 
nodes in a graph. We consider the pixels inside the well 
regions as a fully-connected set of nodes. When run to 
completion, it is also possible to calculate the length of a 
path from any source nodes, to any point on the image. 
Our Dijkstra approach is similar to that found in our 
existing RootNav tool [7]; a graph is produced with a 
node at each pixel, and edges between neighbouring pix-
els. Unlike RootNav, where edges are weighted based on 
the output of an expectation–maximisation classification 
step, the weights in this system are based solely on the 



Page 4 of 10Pound et al. Plant Methods  (2017) 13:12 

grayscale intensity of the pixels. In short, bright pixels 
will generally have low, favourable weights, and darker 
pixels will have higher, less favourable weights. Weights 
are calculated as:

where p and q are the two pixels between which the 
weights are calculated. I(x), is the normalised intensity of 
the image at pixel x, where 0 ≤  I(x) ≤ 1. The additional 
weight α is 1 if the pixels are in the same row or col-
umn, and 

√
2 if they are on a diagonal, to account for the 

increased distances between the pixel centres.
This results in Dijkstra’s algorithm finding shorter 

paths through bright regions of the image, and longer 
ones through dark regions; but note we require no arbi-
trary intensity boundary between foreground (root) and 
background (well). Simply, the algorithm penalises travel 
over non-root material.

Since our approach obtains a number of candidate 
source points representing the top of the root system, we 
adapted the Dijkstra implementation to consider termi-
nation at any one point in a set of points, rather than at 
a single point. The output of this step is a value, for each 
pixel, representing the distance required to travel from 
the source points at the top of the well, to each pixel’s 
position, taking account the weights as described pre-
viously. It is these distances that we treat as likelihoods 
in our probabilistic traits, under the assumption that 
shorter paths travel over brighter pixels (more likely root 
material). This approach has the added benefit of ignor-
ing noisy bright pixels that are unconnected to the root 
structure—to reach these pixels the shortest path must 
travel over background, and thus the lengths of paths to 
noise are often significantly longer. Where noise appears 
close to the root system, this may not always hold; how-
ever we have observed this infrequently during our 
experiments.

In order to quantify phenotypic traits within each 
image or well, we define a likelihood function L, that for 
any pixel produces a likelihood that it belongs to the root 
system:

where dijkstra(x, y) is the shortest distance to pixel x, y, 
from any start position (see Fig.  1). The value L is nor-
malised using the maximum theoretical value of distance 
for an image of that size. In practice this can be calcu-
lated as the maximum distance returned by Dijkstra, 
averaged over a number of wells. Optionally, the function 
L can also be raised to a power, i.e. Ln to decrease the dis-
tance at which the likelihood drops off from bright pixels. 

(1)w(p, q) = 1− α · I(p) · I(q),

(2)

L(x, y) = 1− dijkstra(x, y)/max(dijkstra(u, v), ∀u, v)

We have found this has minimal impact on results, but 
can be useful if plants are more established, and thus the 
maximum distance from root material is never large.

The function L indicates a likelihood of there being a 
root at a given location. Note, we are not thresholding 
the image at this point, rather we wish to assign a confi-
dence level to represent how certain we are that this pixel 
belongs to a root. Any subsequent trait derived from this 
data can maintain the idea of this confidence. Therefore, 
we avoid the problematic situation of having to deter-
mine a priori the exact existence or non-existence or root 
at each location in the image, and can instead make an 
educated guess.

Once image pixels are assigned a confidence level 
indicating root material presence, and a distance to the 
determined anchor point, a number of interesting, but 
non-traditional traits can be measured from the image. 
They are measured in the image space (i.e. in pixels) but 
as we will see this is not important and conversion to 
real-world units is not necessary. The measures currently 
implemented in AutoRoot are presented in Table 1. 

These traits are calculated as a weighted function (e.g. a 
sum or average), where the contribution of each pixel to 
the final measurement is given by its likelihood. So rather 
than, for example, measuring the mass of the root system 
by summing over all thresholded foreground pixels, we 
sum the likelihoods of all pixels in a well. This means that 
all pixels are considered within each measured trait, but 
that those with high likelihood of being root material will 
make a significantly higher contribution. The orientation 
θ at each pixel is calculated using a Sobel convolution:

where Gx and Gy are the gradients in the x and y direc-
tions, calculated using convolution with a Sobel operator.

Implementation and performance
AutoRoot runs in real time, typically taking a few seconds 
to process each well, and approximately 15  s to process 
each image on a standard, modern machine. The size of 
the images we used in this experiment were 5 MP, with 
each well approximately 290  px wide and 710  px tall. 
For images of this resolution, the software comfortably 
runs using <2  GB of RAM. The AutoRoot software has 
been developed in C#, and as such runs on any Windows 
installation. The full code is available under an open-
source license.

Results
In the following experiments we examine how useful the 
new metrics are as proxy measures for classically meas-
ured traits via a simple phenotyping experiment. We also 

(3)θ = tan
−1(Gy/Gx),
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consider the usefulness of using the new proxy measures 
directly as ways of discriminating different phenotypes. 
We have purposefully chosen clearly visible and distinct 
phenotypes in order to demonstrate both the process 
and descriptive power of the proxy traits. AutoRoot has 
been used successfully to recover more subtle phenotypic 
differences in an Arabidopsis root and shoot chemical 
screening experiment [20].

Arabidopsis thaliana seedlings were germinated and 
grown in phytostrips filled with nutrient agar (a 20-fold 
dilution of Gamborg’s B5 medium pH 5.7, 0.5  mM 
KNO3, 0.5% sucrose and solidified with 0.7% Phytagel). 
Treatments were applied using the approach previously 
described [23], where the phytostrips are placed in the 
wells of a microtitre plate containing 150 ul nutrient 
solution, with or without 40% (w/v) polyethylene glycol 
8000 (PEG). Inclusion of the PEG in the microtitre plates 
is designed to impose a water-deficit stress on the grow-
ing seedlings, a treatment that is known to inhibit Arabi-
dopsis root growth [23].

For the imaging, plants were automatically imaged in 
clear wells of growth media, using the Microphenotron 
system [20] (see Fig. 1).

Automated measures as proxies for manual metrics
The measures that we propose can act as proxy meas-
ures for the more classical manual measures of the phe-
notype. To demonstrate this, plants in 23 images, each 
featuring eight wells, and grown in multiple conditions as 
described above (so expressing a variety of phenotypes) 
were both measured manually, and analysed with the new 
software. Manual measurements were carried out using 
the Fiji software (http://fiji.sc/) [24]. As wells contained 
multiple plants, a simple and fast approximation method 
was used to manually quantify root length, lateral count 
and estimate mass per well (inspired by the fast ‘shov-
elomics’ approach developed for in-field phenotyping 
[25]). To measure length, a representative root length was 
estimated for the well, using the straight line measuring 
rule in Fiji (see red bars in Fig.  2a for examples). Root 
density (sometimes termed mass, or abundance of root 
material) was estimated by categorising the well depend-
ing on the amount of root material present: 0 represent-
ing no growth at all, and 10 representing an abundance 
of root growth. The number of laterals in the well was 
categorised into bins (0–5, 6–10, 11–15, 16+). This is a 
coarse measure, but identifying individual laterals, and 

Table 1 Proxy traits proposed here

Where appropriate, a nearest traditional measure is listed. L refers to the root likelihood function (Eq. 2). Note the final two traits are measured from a top-down 
camera view

Proposed trait Description Nearest traditional equivalent

Centroid The weighted centre of mass of the root system Centre of mass of all root pixels

Mass A normalised sum of all likelihoods generated by L in a given 
image or well

Sum of all root pixels

Width/depth (M) Bounding box width and depth of the root system. Calculated 
as maximum point of mass on the extremities of the root 
system. We define this as: argmaxx(L(x , y) · x) and similarly 
for y and the other sides of the bounding box

Maximum width and depth reached by all root pixels

Width/depth (p95) Alternative bounding box width and depth of the root 
system. Calculated to enclose 95% of the calculated root 
likelihood

Maximum width and depth reached by all root pixels, dis-
counting a small number of root outliers

Depth (p99) Alternative depth measurement, calculated as 99% of the root 
likelihood

Maximum depth reached by all root pixels, discounting less 
outliers than p95

Quadrant mass The mass trait split horizontally into four regions for each well, 
giving a measure of root material within each quadrant (see 
Fig. 2a)

Root pixel count in four regions (at varying depths)

Orientation Ten brackets of orientation representing the direction of the 
root system at each pixel. These range from 0°, horizontal, to 
90°, vertical. (see Additional file 1: Figure S1)

Histogram of all root angles

Quadrant orientation The orientation trait split horizontally into four regions for 
each well (as previously). Orientations are now grouped into 
four brackets per quadrant, rather than 10, giving 16 values 
for each well in total

Histogram of root angles at different depths

Leaf hue The average hue for each leaf pixel in the top image, for each 
well

Average pixel hue i.e. leaf colour

Leaf area Total pixel count for all non-white pixels in the top image, 
per well. Non-white is defined as having a saturation value 
above a low threshold of 20%

Pixel count of leaf area

http://fiji.sc/
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judging whether a particular section of root is lateral or 
not can be subjective, so no finer granularity was sought. 
Table 2 shows example measures (automatic and manual) 
from the wells in Fig. 2a.

In order to examine the relationship between proxy 
parameters and manual measures, a correlation matrix 
was calculated between all proxy measures and manual 
measures for this dataset (see Table 3). 

For the manual measurement of length, the most cor-
related proxy measures are proxy-depth, centroid-Y and 
the vertical extent of the bounding boxes containing 95 
and 99% of root material (Table 3). Q3 mass also provides 
a good correlation—this represents the amount of root 
material in the third horizontal quarter down the well. 

Intuitively, the amount of root material in the third and 
fourth quadrants will increase with the overall length of 
the root system, dependent on the particular length of 
the root system. Figure  2b shows proxy depth plotted 
against manually estimated length, showing a good cor-
relation throughout the range of data.

The manual density measure correlates highly with 
both overall mass, and orientation measures which cap-
ture lateral root emergence, as these represent much of 
the root mass in a dense image. The manual lateral count 
again correlates highly with root mass at orientations 3–5 
(which mainly capture near-horizontal to 45° lateral root 
material), and correlates well with mass (as much of the 
mass of the root system is given over to lateral roots).

Fig. 1 a Top-down image from the Microphenotron. b Side-facing image of the same plants in a. c L(x, y) visualised as a heat map for the set of 
eight wells in b. Brighter areas indicate regions the software considers more likely to be root material
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Correlation is important as we are not measuring pure, 
classic traits here. Therefore if we can identify a proxy 
measure (or combination of measures) which corre-
late well with a classical trait, then these measures can 
be used to identify the phenotypes of interest. A strong 
positive correlation will show that as proxy measure A 
increases, this also indicates an increase in classical trait 
A, so phenotypes can be compared relatively. Hence the 
need to calibrate measures into real world units is not 
required.

Finally, note that the specific subset of proxy traits 
which correlate well with classical measures of interest 
will vary dependant on the exact nature of the pheno-
type, and so you may experience different correlations to 
those listed here. This is the motivation behind directly 

Fig. 2 a Manual measures derived from three varying wells—red bar indicates manual root length estimations. Green ticks indicate approximate 
boundaries for quartile divisions—Q0 at the top, Q3 at the bottom. Comparison of manual and automatically derived measures for these wells can 
be seen in Table 1 and panel. Note the subjective judgment required for root length in the left hand well. b Manual length plotted against proxy-
depth for a mixed population of plants in 184 wells. To note in the graph, some of the plants had reached the bottom of the wells, represented at 
the cluster at (1400, 700)

Table 2 Well label corresponds to well from Fig. 2a

Manual measures are presented first, followed by automatically-derived proxy equivalents. Note proxy traits have arbitrary units

Well Manual  
length

Manual 
density

Manual  
laterals

AutoRoot depth (M) 
(proxy-length)

AutoRoot mass 
(proxy-mass)

AutoRoot orientation 
1 (proxy-laterals)

Left 644 1 0 441 54,313 76

Middle 852 5 10 442 75,919 297

Right 1400 9 15 709 153,493 1632

Table 3 Correlation matrix between  a subset of  the met-
rics, showing the highest-correlated proxy measures (in 
italics) with each manual measure

Length Density Laterals

Centroid Y 0.95 0.71 0.79

Q3 mass 0.94 0.71 0.76

Depth (M) 0.94 0.70 0.79

Depth (p95) 0.94 0.70 0.79

Depth (p99) 0.92 0.69 0.78

Mass 0.91 0.79 0.83

Orientation: 2 0.86 0.79 0.83

Orientation: 3 0.83 0.81 0.84

Orientation: 4 0.80 0.83 0.86

Orientation: 5 0.72 0.85 0.84
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using the proxy measures as phenotypic discriminators, 
as investigated in the following section.

Proxy measures as discriminators
As well as being correlated with traditional traits, the 
new proxy measures are useful discriminative measures 
in their own right. To demonstrate this, we analysed the 
raw data produced by the software from the same growth 
experiment described above. All well plates in all images 
were analysed, fully automatically without user interac-
tion. Scatterplots of pairs of proxy measures (commonly 
referred to as a pairs plot) were produced (Fig.  3). This 
figure gives a helpful indication of how useful the meas-
ures are in identifying phenotypic differences in our 
example dataset. As can be seen in Fig. 3, the two growth 
conditions are strongly separable in many of the newly 
proposed measures. Based on this, traditional unsuper-
vised clustering approaches such as k-means would work 
effectively in separating phenotypic classes.

Often, if individual traits do not provide enough sepa-
rability, or some measures (such as variants on depth) are 
strongly correlated, or the dimensionality of the dataset is 
large, principal component analysis (PCA) can be used to 

perform dimensionality reduction. PCA provides a new 
set of variables that are created by linearly combining 
the original variables and maximising the variance of the 
dataset. The inset in Fig. 3 shows a biplot of the results 
of PCA on this dataset, for principal components 1 and 
2 (the components with the largest proportion of the 
variance of the data). Together, these components repre-
sent over 78% of the variance in this dataset, and can be 
shown to separate easily the control and treated plants.

Conclusion
In this paper we present an alternative to traditional man-
ual image measures, which we term proxy traits. They 
can be calculated over complex images where segmenting 
all parts of a root system is not possible, or not reliable. 
These proxy traits are well suited to fully automated analy-
sis settings, especially as part of automated robotic-based 
systems. Computational performance exceeds image cap-
ture, so does not produce an additional bottleneck.

As shown in the results, the proposed proxy measures 
are able to correlate well with existing metrics commonly 
derived from image data. This suggests these fast-to-cal-
culate and automatically-derived measures are suitable 

Fig. 3 Scatter plots for pairs of proxy traits, for PEG (red) and control (black) datasets. Inset biplot of the PCA across components 1 and 2. Note how 
many of the proxy traits clearly separate the two experimental conditions. Therefore, they can be used to detect phenotypically different datasets 
directly (see Additional file 2: Figure S2 for example images)
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for replacing some of these traditional metrics, and can 
be used to identify relative differences in phenotypic 
conditions.

In addition, analysis of the proxy measures via statisti-
cal techniques such as PCA and visualisation using scat-
ter plots reveals that it is possible to directly discriminate 
between different plants exhibiting different phenotypic 
traits. As can be seen from Fig. 3, many of the proxy traits 
separate across the two datasets, showing that they can 
be used to identify phenotypic differences between the 
plants. Of course, for more subtle phenotypic differ-
ences, the separation may not be as dramatic, and only 
some traits (or combination of traits) may separate con-
ditions. If this is the case, usual statistical treatments can 
be applied to the proxy measures to identify subtle phe-
notypic differences, just as with traditional measures.

The new measures are not a suitable alternative to man-
ual or semi-automatic approaches, where fine-grained 
phenotypic analysis is required. However, we have shown 
that they can be used as an alternative to many traditional 
high-throughput measures, and that they are able to sep-
arate phenotypically-different datasets. In many cases 
(e.g. [7]) fine-grained capture of a root system architec-
ture is used as an intermediate step to producing pheno-
typic traits, in which case this intermediate step could be 
skipped, significantly speeding up image analysis. Finally, 
there is no reason to believe similar traits could not be 
used in phenotyping other systems, such as plant shoots, 
where similar proxies could be used.
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