210 research outputs found
Cysteine Redox Potential Determines Pro-Inflammatory IL-1β Levels
Cysteine (Cys) and its disulfide, cystine (CySS) represent the major extracellular thiol/disulfide redox control system. The redox potential (E(h)) of Cys/CySS is centered at approximately -80 mV in the plasma of healthy adults, and oxidation of E(h) Cys/CySS is implicated in inflammation associated with various diseases.The purpose of the present study was to determine whether oxidized E(h) Cys/CySS is a determinant of interleukin (IL)-1beta levels. Results showed a 1.7-fold increase in secreted pro-IL-1beta levels in U937 monocytes exposed to oxidized E(h) Cys/CySS (-46 mV), compared to controls exposed to a physiological E(h) of -80 mV (P<0.01). In LPS-challenged mice, preservation of plasma E(h) Cys/CySS from oxidation by dietary sulfur amino acid (SAA) supplementation, was associated with a 1.6-fold decrease in plasma IL-1beta compared to control mice fed an isonitrogenous SAA-adequate diet (P<0.01). Analysis of E(h) Cys/CySS and IL-1beta in human plasma revealed a significant positive association between oxidized E(h) Cys/CySS and IL-1beta after controlling for age, gender, and BMI (P<0.001).These data show that oxidized extracellular E(h) Cys/CySS is a determinant of IL-1beta levels, and suggest that strategies to preserve E(h) Cys/CySS may represent a means to control IL-1beta in inflammatory disease states
Machine-learning of atomic-scale properties based on physical principles
We briefly summarize the kernel regression approach, as used recently in
materials modelling, to fitting functions, particularly potential energy
surfaces, and highlight how the linear algebra framework can be used to both
predict and train from linear functionals of the potential energy, such as the
total energy and atomic forces. We then give a detailed account of the Smooth
Overlap of Atomic Positions (SOAP) representation and kernel, showing how it
arises from an abstract representation of smooth atomic densities, and how it
is related to several popular density-based representations of atomic
structure. We also discuss recent generalisations that allow fine control of
correlations between different atomic species, prediction and fitting of
tensorial properties, and also how to construct structural kernels---applicable
to comparing entire molecules or periodic systems---that go beyond an additive
combination of local environments
Spent Culture Medium from Virulent Borrelia burgdorferi Increases Permeability of Individually Perfused Microvessels of Rat Mesentery
Lyme disease is a common vector-borne disease caused by the spirochete Borrelia burgdorferi (Bb), which manifests as systemic and targeted tissue inflammation. Both in vitro and in vivo studies have shown that Bb-induced inflammation is primarily host-mediated, via cytokine or chemokine production that promotes leukocyte adhesion/migration. Whether Bb produces mediators that can directly alter the vascular permeability in vivo has not been investigated. The objective of the present study was to investigate if Bb produces a mediator(s) that can directly activate endothelial cells resulting in increases in permeability in intact microvessels in the absence of blood cells.The effects of cell-free, spent culture medium from virulent (B31-A3) and avirulent (B31-A) B. burgdorferi on microvessel permeability and endothelial calcium concentration, [Ca(2+)](i), were examined in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). Endothelial [Ca(2+)](i), a necessary signal initiating hyperpermeability, was measured in Fura-2 loaded microvessels. B31-A3 spent medium caused a rapid and transient increase in Lp and endothelial [Ca(2+)](i). Within 2-5 min, the mean peak Lp increased to 5.6+/-0.9 times the control, and endothelial [Ca(2+)](i) increased from 113+/-11 nM to a mean peak value of 324+/-35 nM. In contrast, neither endothelial [Ca(2+)](i) nor Lp was altered by B31-A spent medium.A mediator(s) produced by virulent Bb under culture conditions directly activates endothelial cells, resulting in increases in microvessel permeability. Most importantly, the production of this mediator is associated with Bb virulence and is likely produced by one or more of the 8 plasmid(s) missing from strain B31-A
The Effects of Playing with Thin Dolls on Body Image and Food Intake in Young Girls
This study experimentally tested the effects of playing with thin dolls on body image and food intake in 6- to 10-year-old Dutch girls (N = 117). Girls were randomly assigned to play with a thin doll, an average-sized doll, or Legos in a no doll control condition. After 10 min, they participated in a taste-test and completed questionnaires about body image. No differences were found between conditions for any of the body image variables. However, girls who played with the average-sized doll ate significantly more food than girls in other exposure conditions. Although no support was found for the assumption that playing with thin dolls influences body image, the dolls directly affected actual food intake in these young girls
The acceptability and feasibility of using the Adult Social Care Outcomes Toolkit (ASCOT) to inform practice in care homes
Background: The Adult Social Care Outcomes Toolkit (ASCOT) measures social care related quality of life (SCRQoL) and can be used to measure outcomes and demonstrate impact across different social care settings. This exploratory study built on previous work by collecting new inter-rater reliability data on the mixed-methods version of the toolkit and exploring how it might be used to inform practice in four case study homes. Method: We worked with two care home providers to agree an in-depth study collecting SCRQoL data in four case-study homes. Data was collected about residents’ age, ethnicity, cognitive impairment, ability to perform activities of daily living and SCRQoL in the four homes. Feedback sessions with staff and managers were held in the homes two weeks after baseline and follow-up data collected three months later. Interviews with managers explored their views of the feedback and recorded any changes that had been made because of it. Results: Participant recruitment was challenging, despite working in partnership with the homes. Resident response rates ranged from 23 to 54 % with 58 residents from four care homes taking part in the research. 53 % lacked capacity to consent. Inter-rater reliability for the ASCOT ratings of SCRQoL were good at time one (IRR = 0.72) and excellent at time two (IRR = 0.76). During the study, residents’ ability to perform activities of daily living declined significantly (z = -2.67, p < .01), as did their expected needs in the absence of services (z = -2.41, p < .05). Despite these rapid declines in functionings, residents’ current SCRQoL declined slightly but not significantly (Z = -1.49, p = .14). Staff responded positively to the feedback given and managers reported implementing changes in practice because of it. Conclusion: This exploratory study faced many challenges in the recruitment of residents, many of whom were cognitively impaired. Nevertheless, without a mixed-methods approach many of the residents living in the care homes would have been excluded from the research altogether or had their views represented only by a representative or proxy. The value of the mixed-methods toolkit and its potential for use by providers is discussed
Highlight Talk: Recent Results from VERITAS
VERITAS is a state-of-the-art ground-based gamma-ray observatory that operates in the very high-energy (VHE) region of 100 GeV to 50 TeV. The observatory consists of an array of four 12m-diameter imaging atmospheric Cherenkov telescopes located in southern Arizona, USA. The four-telescope array has been fully operational since September 2007, and over the last two years, VERITAS has been operating with high efficiency and with excellent performance. This talk summarizes the recent results from VERITAS, including the discovery of eight new VHE gamma-ray sources
Initial Characterization of the FlgE Hook High Molecular Weight Complex of
The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility
Metabolomic analysis of human disease and its application to the eye
Metabolomics, the analysis of the metabolite profile in body fluids or tissues, is being applied to the analysis of a number of different diseases as well as being used in following responses to therapy. While genomics involves the study of gene expression and proteomics the expression of proteins, metabolomics investigates the consequences of the activity of these genes and proteins. There is good reason to think that metabolomics will find particular utility in the investigation of inflammation, given the multi-layered responses to infection and damage that are seen. This may be particularly relevant to eye disease, which may have tissue specific and systemic components. Metabolomic analysis can inform us about ocular or other body fluids and can therefore provide new information on pathways and processes involved in these responses. In this review, we explore the metabolic consequences of disease, in particular ocular conditions, and why the data may be usefully and uniquely assessed using the multiplexed analysis inherent in the metabolomic approach
Major Role of Microbes in Carbon Fluxes during Austral Winter in the Southern Drake Passage
Carbon cycling in Southern Ocean is a major issue in climate change, hence the need to understand the role of biota in the regulation of carbon fixation and cycling. Southern Ocean is a heterogeneous system, characterized by a strong seasonality, due to long dark winter. Yet, currently little is known about biogeochemical dynamics during this season, particularly in the deeper part of the ocean. We studied bacterial communities and processes in summer and winter cruises in the southern Drake Passage. Here we show that in winter, when the primary production is greatly reduced, Bacteria and Archaea become the major producers of biogenic particles, at the expense of dissolved organic carbon drawdown. Heterotrophic production and chemoautotrophic CO2 fixation rates were substantial, also in deep water, and bacterial populations were controlled by protists and viruses. A dynamic food web is also consistent with the observed temporal and spatial variations in archaeal and bacterial communities that might exploit various niches. Thus, Southern Ocean microbial loop may substantially maintain a wintertime food web and system respiration at the expense of summer produced DOC as well as regenerate nutrients and iron. Our findings have important implications for Southern Ocean ecosystem functioning and carbon cycle and its manipulation by iron enrichment to achieve net sequestration of atmospheric CO2
- …