131 research outputs found

    Control of breathing and respiratory gas exchange in high-altitude ducks native to the Andes

    Get PDF
    We examined the control of breathing and respiratory gas exchange in six species of high-altitude duck that independently colonized the high Andes. We compared ducks from high-altitude populations in Peru (Lake Titicaca at ∼3800 m above sea level; Chancay River at ∼3000–4100 m) with closely related populations or species from low altitude. Hypoxic ventilatory responses were measured shortly after capture at the native altitude. In general, ducks responded to acute hypoxia with robust increases in total ventilation and pulmonary O2 extraction. O2 consumption rates were maintained or increased slightly in acute hypoxia, despite ∼1–2°C reductions in body temperature in most species. Two high-altitude taxa – yellow-billed pintail and torrent duck – exhibited higher total ventilation than their low-altitude counterparts, and yellow-billed pintail exhibited greater increases in pulmonary O2 extraction in severe hypoxia. In contrast, three other high-altitude taxa – Andean ruddy duck, Andean cinnamon teal and speckled teal – had similar or slightly reduced total ventilation and pulmonary O2 extraction compared with low-altitude relatives. Arterial O2 saturation (SaO2) was elevated in yellow-billed pintails at moderate levels of hypoxia, but there were no differences in SaO2 in other high-altitude taxa compared with their close relatives. This finding suggests that improvements in SaO2 in hypoxia can require increases in both breathing and haemoglobin–O2 affinity, because the yellow-billed pintail was the only high-altitude duck with concurrent increases in both traits compared with its low-altitude relative. Overall, our results suggest that distinct physiological strategies for coping with hypoxia can exist across different high-altitude lineages, even among those inhabiting very similar high-altitude habitats

    Respiratory mechanics of eleven avian species resident at high and low altitude

    Get PDF
    The metabolic cost of breathing at rest has never been successfully measured in birds, but has been hypothesized to be higher than in mammals of a similar size because of the rocking motion of the avian sternum being encumbered by the pectoral flight muscles. To measure the cost and work of breathing, and to investigate whether species resident at high altitude exhibit morphological or mechanical changes that alter the work of breathing, we studied 11 species of waterfowl: five from high altitudes (>3000 m) in Peru, and six from low altitudes in Oregon, USA. Birds were anesthetized and mechanically ventilated in sternal recumbency with known tidal volumes and breathing frequencies. The work done by the ventilator was measured, and these values were applied to the combinations of tidal volumes and breathing frequencies used by the birds to breathe at rest. We found the respiratory system of high-altitude species to be of a similar size, but consistently more compliant than that of low altitude sister taxa, although this did not translate to a significantly reduced work of breathing. The metabolic cost of breathing was estimated to be between 1 and 3% of basal metabolic rate, as low or lower than estimates for other groups of tetrapods

    Correction: International Society of Sports Nutrition position stand: Nutrient timing

    Get PDF
    Position Statement: The position of the Society regarding nutrient timing and the intake of carbohydrates, proteins, and fats in reference to healthy, exercising individuals is summarized by the following eight points: 1.) Maximal endogenous glycogen stores are best promoted by following a high-glycemic, high-carbohydrate (CHO) diet (600 – 1000 grams CHO or ~8 – 10 g CHO/kg/d), and ingestion of free amino acids and protein (PRO) alone or in combination with CHO before resistance exercise can maximally stimulate protein synthesis. 2.) During exercise, CHO should be consumed at a rate of 30 – 60 grams of CHO/hour in a 6 – 8% CHO solution (8 – 16 fluid ounces) every 10 – 15 minutes. Adding PRO to create a CHO:PRO ratio of 3 – 4:1 may increase endurance performance and maximally promotes glycogen re-synthesis during acute and subsequent bouts of endurance exercise. 3.) Ingesting CHO alone or in combination with PRO during resistance exercise increases muscle glycogen, offsets muscle damage, and facilitates greater training adaptations after either acute or prolonged periods of supplementation with resistance training. 4.) Post-exercise (within 30 minutes) consumption of CHO at high dosages (8 – 10 g CHO/kg/day) have been shown to stimulate muscle glycogen re-synthesis, while adding PRO (0.2 g – 0.5 g PRO/kg/day) to CHO at a ratio of 3 – 4:1 (CHO: PRO) may further enhance glycogen re-synthesis. 5.) Post-exercise ingestion (immediately to 3 h post) of amino acids, primarily essential amino acids, has been shown to stimulate robust increases in muscle protein synthesis, while the addition of CHO may stimulate even greater levels of protein synthesis. Additionally, pre-exercise consumption of a CHO + PRO supplement may result in peak levels of protein synthesis. 6.) During consistent, prolonged resistance training, post-exercise consumption of varying doses of CHO + PRO supplements in varying dosages have been shown to stimulate improvements in strength and body composition when compared to control or placebo conditions. 7.) The addition of creatine (Cr) (0.1 g Cr/kg/day) to a CHO + PRO supplement may facilitate even greater adaptations to resistance training. 8.) Nutrient timing incorporates the use of methodical planning and eating of whole foods, nutrients extracted from food, and other sources. The timing of the energy intake and the ratio of certain ingested macronutrients are likely the attributes which allow for enhanced recovery and tissue repair following high-volume exercise, augmented muscle protein synthesis, and improved mood states when compared with unplanned or traditional strategies of nutrient intake

    Biclustering models for two-mode ordinal data

    Get PDF
    The work in this paper introduces finite mixture models that can be used to simul- taneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which provide insights into major patterns in the data. Model-fitting is performed using the EM algorithm and a fuzzy allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models is evaluated in a simulation study and demonstrated using two real data sets

    Analysis of the efficacy, safety, and regulatory status of novel forms of creatine

    Get PDF
    Creatine has become one of the most popular dietary supplements in the sports nutrition market. The form of creatine that has been most extensively studied and commonly used in dietary supplements is creatine monohydrate (CM). Studies have consistently indicated that CM supplementation increases muscle creatine and phosphocreatine concentrations by approximately 15–40%, enhances anaerobic exercise capacity, and increases training volume leading to greater gains in strength, power, and muscle mass. A number of potential therapeutic benefits have also been suggested in various clinical populations. Studies have indicated that CM is not degraded during normal digestion and that nearly 99% of orally ingested CM is either taken up by muscle or excreted in urine. Further, no medically significant side effects have been reported in literature. Nevertheless, supplement manufacturers have continually introduced newer forms of creatine into the marketplace. These newer forms have been purported to have better physical and chemical properties, bioavailability, efficacy, and/or safety profiles than CM. However, there is little to no evidence that any of the newer forms of creatine are more effective and/or safer than CM whether ingested alone and/or in combination with other nutrients. In addition, whereas the safety, efficacy, and regulatory status of CM is clearly defined in almost all global markets; the safety, efficacy, and regulatory status of other forms of creatine present in today’s marketplace as a dietary or food supplement is less clear

    Reactivation of M. tuberculosis Infection in Trans-Membrane Tumour Necrosis Factor Mice

    Get PDF
    Of those individuals who are infected with M. tuberculosis, 90% do not develop active disease and represents a large reservoir of M. tuberculosis with the potential for reactivation of infection. Sustained TNF expression is required for containment of persistent infection and TNF neutralization leads to tuberculosis reactivation. In this study, we investigated the contribution of soluble TNF (solTNF) and transmembrane TNF (Tm-TNF) in immune responses generated against reactivating tuberculosis. In a chemotherapy induced tuberculosis reactivation model, mice were challenged by aerosol inhalation infection with low dose M. tuberculosis for three weeks to establish infection followed chemotherapeutic treatment for six weeks, after which therapy was terminated and tuberculosis reactivation investigated. We demonstrate that complete absence of TNF results in host susceptibility to M. tuberculosis reactivation in the presence of established mycobacteria-specific adaptive immunity with mice displaying unrestricted bacilli growth and diffused granuloma structures compared to WT control mice. Interestingly, bacterial re-emergence is contained in Tm-TNF mice during the initial phases of tuberculosis reactivation, indicating that Tm-TNF sustains immune pressure as in WT mice. However, Tm-TNF mice show susceptibility to long term M. tuberculosis reactivation associated with uncontrolled influx of leukocytes in the lungs and reduced IL-12p70, IFNγ and IL-10, enlarged granuloma structures, and failure to contain mycobacterial replication relative to WT mice. In conclusion, we demonstrate that both solTNF and Tm-TNF are required for maintaining immune pressure to contain reactivating M. tuberculosis bacilli even after mycobacteria-specific immunity has been established

    Mobilization of HIV Spread by Diaphanous 2 Dependent Filopodia in Infected Dendritic Cells

    Get PDF
    Paramount to the success of persistent viral infection is the ability of viruses to navigate hostile environments en route to future targets. In response to such obstacles, many viruses have developed the ability of establishing actin rich-membrane bridges to aid in future infections. Herein through dynamic imaging of HIV infected dendritic cells, we have observed how viral high-jacking of the actin/membrane network facilitates one of the most efficient forms of HIV spread. Within infected DC, viral egress is coupled to viral filopodia formation, with more than 90% of filopodia bearing immature HIV on their tips at extensions of 10 to 20 µm. Live imaging showed HIV filopodia routinely pivoting at their base, and projecting HIV virions at µm.sec−1 along repetitive arc trajectories. HIV filopodial dynamics lead to up to 800 DC to CD4 T cell contacts per hour, with selection of T cells culminating in multiple filopodia tethering and converging to envelope the CD4 T-cell membrane with budding HIV particles. Long viral filopodial formation was dependent on the formin diaphanous 2 (Diaph2), and not a dominant Arp2/3 filopodial pathway often associated with pathogenic actin polymerization. Manipulation of HIV Nef reduced HIV transfer 25-fold by reducing viral filopodia frequency, supporting the potency of DC HIV transfer was dependent on viral filopodia abundance. Thus our observations show HIV corrupts DC to CD4 T cell interactions by physically embedding at the leading edge contacts of long DC filopodial networks

    Influence of country and city images on students’ perception of host universities and their satisfaction with the assigned destination for their exchange programmes

    Get PDF
    ABSTRACT: This research focuses on the effect that country image, city image and university image has on students’ a priori satisfaction with the assigned destination for their international exchange programme (Bachelor and Master). In particular, this study establishes six hypotheses related to the causal relationships among the different typologies of image and their effects on students’ satisfaction with the assigned destination to study at least one semester in a host university. In order to contrast these hypotheses, a quantitative research was carried out in the Spanish city of Santander (Spain), by obtaining a sample of 245 international students who participated in an exchange programme at the University of Cantabria. The research findings are: (1) students’ satisfaction with the assigned destination is positively influenced by the university image; (2) the university image is positively influenced by the city image; and (3) the city image is positively influenced by the country image

    Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition

    Get PDF
    Induction of epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSCs) can occur as the result of embryonic pathway signaling. Activation of Hedgehog (Hh), Wnt, Notch, or transforming growth factor-β leads to the upregulation of a group of transcriptional factors that drive EMT. This process leads to the transformation of adhesive, non-mobile, epithelial-like tumor cells into cells with a mobile, invasive phenotype. CSCs and the EMT process are currently being investigated for the role they play in driving metastatic tumor formation in breast cancer. Both are very closely associated with embryonic signaling pathways that stimulate self-renewal properties of CSCs and EMT-inducing transcription factors. Understanding these mechanisms and embryonic signaling pathways may lead to new opportunities for developing therapeutic agents to help prevent metastasis in breast cancer. In this review, we examine embryonic signaling pathways, CSCs, and factors affecting EMT
    corecore