2,172 research outputs found
Oxidation of Columbium-Chromium Alloys at Elevated Temperatures
Screening studies of the oxidation characteristics of binary alloys of columbium (Ref. 1) showed that chromium was an additive element worthy of intensive study. The screening studies showed that chromium additions were especially helpful in decreasing the oxidation rate of columbium at 10000deg C and were somewhat less beneficial at 12000deg C. It is the purpose of this investigation to study the oxidation characteristics of binary columbium-chromium alloys in more detail
Atomic resolution STM imaging of a twisted single-wall carbon nanotube
We present atomically-resolved STM images of single-wall carbon nanotubes
(SWNTs) embedded in a crystalline nanotube rope. Although they may be
interpreted as of a chiral nanotube, the images are more consistently explained
a an achiral armchair tube with a quenched twist distortion. The existence of
quenched twists in SWNTs in ropes might explain the fact that both as-grown
bulk nanotube material and individual ropes have insulator-like conductivity at
low temperature.Comment: preprint, 4 pages, and 4 gif figure
Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test
Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship
Modulational instability, wave breaking and formation of large scale dipoles in the atmosphere
In the present Letter we use the Direct Numerical Simulation (DNS) of the
Navier-Stokes equation for a two-phase flow (water and air) to study the
dynamics of the modulational instability of free surface waves and its
contribution to the interaction between ocean and atmosphere. If the steepness
of the initial wave is large enough, we observe a wave breaking and the
formation of large scale dipole structures in the air. Because of the multiple
steepening and breaking of the waves under unstable wave packets, a train of
dipoles is released and propagate in the atmosphere at a height comparable with
the wave length. The amount of energy dissipated by the breaker in water and
air is considered and, contrary to expectations, we observe that the energy
dissipation in air is larger than the one in the water. Possible consequences
on the wave modelling and on the exchange of aerosols and gases between air and
water are discussed
Structure of resonance eigenfunctions for chaotic systems with partial escape
Physical systems are often neither completely closed nor completely open, but instead are best described by dynamical systems with partial escape or absorption. In this paper we introduce classical measures that explain the main properties of resonance eigenfunctions of chaotic quantum systems with partial escape. We construct a family of conditionally invariant measures with varying decay rates by interpolating between the natural measures of the forward and backward dynamics. Numerical simulations in a representative system show that our classical measures correctly describe the main features of the quantum eigenfunctions: their multifractal phase-space distribution, their product structure along stable and unstable directions, and their dependence on the decay rate. The (Jensen-Shannon) distance between classical and quantum measures goes to zero in the semiclassical limit for long- and short-lived eigenfunctions, while it remains finite for intermediate cases
Persistent detwinning of iron pnictides by small magnetic fields
Our comprehensive study on EuFeAs reveals a dramatic reduction of
magnetic detwinning fields compared to other AFeAs (A = Ba, Sr, Ca)
iron pnictides by indirect magneto-elastic coupling of the Eu ions. We
find that only 0.1T are sufficient for persistent detwinning below the local
Eu ordering; above = 19K, higher fields are necessary.
Even after the field is switched off, a significant imbalance of twin domains
remains constant up to the structural and electronic phase transition (190K).
This persistent detwinning provides the unique possibility to study the low
temperature electronic in-plane anisotropy of iron pnictides without applying
any symmetrybreaking external force.Comment: accepted by Physical Review Letter
Staphylococcal biofilm formation on the surface of three different calcium phosphate bone grafts: a qualitative and quantitative in vivo analysis.
Differences in physico-chemical characteristics of bone grafts to fill bone defects have been demonstrated to influence in vitro bacterial biofilm formation. Aim of the study was to investigate in vivo staphylococcal biofilm formation on different calcium phosphate bone substitutes. A foreign-body guinea-pig infection model was used. Teflon cages prefilled with β-tricalcium phosphate, calcium-deficient hydroxyapatite, or dicalcium phosphate (DCP) scaffold were implanted subcutaneously. Scaffolds were infected with 2 × 10(3) colony-forming unit of Staphylococcus aureus (two strains) or S. epidermidis and explanted after 3, 24 or 72 h of biofilm formation. Quantitative and qualitative biofilm analysis was performed by sonication followed by viable counts, and microcalorimetry, respectively. Independently of the material, S. aureus formed increasing amounts of biofilm on the surface of all scaffolds over time as determined by both methods. For S. epidermidis, the biofilm amount decreased over time, and no biofilm was detected by microcalorimetry on the DCP scaffolds after 72 h of infection. However, when using a higher S. epidermidis inoculum, increasing amounts of biofilm were formed on all scaffolds as determined by microcalorimetry. No significant variation in staphylococcal in vivo biofilm formation was observed between the different materials tested. This study highlights the importance of in vivo studies, in addition to in vitro studies, when investigating biofilm formation of bone grafts
Collective responses of Bi-2212 stacked junction to 100 GHz microwave radiation under magnetic field oriented along the c-axis
We studied a response of Bi-2212 mesa type structures to 100 GHz microwave
radiation. We found that applying magnetic field of about 0.1 T across the
layers enables to observe collective Shapiro step response corresponding to a
synchronization of all 50 intrinsic Josephson junctions (IJJ) of the mesa. At
high microwave power we observed up to 10th harmonics of the fundamental
Shapiro step. Besides, we found microwave induced flux-flow step position of
which is proportional to the square root of microwave power and that can exceed
at high enough powers 1 THz operating frequency of IJJ oscillations.Comment: 11 pages including 5 figures, accepted for publication in JETP
Letter
Origin of Low-Energy Excitations in Charge-Ordered Manganites
The low-energy excitations in the charge-ordered phase of polycrystalline
La0.25Ca0.75MnO3 are explored by frequency-domain terahertz spectroscopy. In
the frequency range from 4 cm^-1 to 700 cm^-1 (energies 0.4 meV to 90 meV) and
at temperatures down to 5 K, we do not detect any feature that can be
associated with the collective response of the spatially modulated charge
continuum. In the antiferromagnetically ordered phase, broad absorption bands
appear in the conductivity and permittivity spectra around 30 cm^-1 and 100
cm^-1 which are assigned to former acoustic phonons optically activated due to
a fourfold superstructure in the crystal lattice. Our results indicate that
characteristic energies of collective excitations of the charge-ordered phase
in La0:25Ca0:75MnO3, if any, lie below 1 meV. At our lowest frequencies of only
few wavenumbers a strong relaxation is observed above 100 K connected to the
formation of the charge-ordered state.Comment: 5 pages, 3 figure
- …
