3,854 research outputs found

    Multi-objective improvement of software using co-evolution and smart seeding

    Get PDF
    Optimising non-functional properties of software is an important part of the implementation process. One such property is execution time, and compilers target a reduction in execution time using a variety of optimisation techniques. Compiler optimisation is not always able to produce semantically equivalent alternatives that improve execution times, even if such alternatives are known to exist. Often, this is due to the local nature of such optimisations. In this paper we present a novel framework for optimising existing software using a hybrid of evolutionary optimisation techniques. Given as input the implementation of a program or function, we use Genetic Programming to evolve a new semantically equivalent version, optimised to reduce execution time subject to a given probability distribution of inputs. We employ a co-evolved population of test cases to encourage the preservation of the program’s semantics, and exploit the original program through seeding of the population in order to focus the search. We carry out experiments to identify the important factors in maximising efficiency gains. Although in this work we have optimised execution time, other non-functional criteria could be optimised in a similar manner

    Chemical Contamination of Green Turtle (Chelonia mydas) Eggs in Peninsular Malaysia: Implications for Conservation and Public Health

    Get PDF
    BACKGROUND: Persistent organic pollutants (POPs)-such as organochlorine pesticides (OCPS), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs)-and heavy metals have been reported in sea turtles at various stages of their life cycle. These chemicals can disrupt development and function of wildlife. Furthermore, in areas such as Peninsular Malaysia, where the human consumption of sea turtle eggs is prevalent, egg contamination may also have public health implications. OBJECTIVE: In the present study we investigated conservation and human health risks associated with the chemical contamination of green turtle (Chelonia mydas) eggs in Peninsular Malaysia. METHODS: Fifty-five C mydas eggs were collected from markets in Peninsular Malaysia and analyzed for POPs and heavy metals. We conducted screening risk assessments (SRAs) and calculated the percent of acceptable daily intake (ADI) for POPs and metals to assess conservation and human health risks associated with egg contamination. RESULTS: C mydas eggs were available in 9 of the 33 markets visited. These eggs came from seven nesting areas from as far away as Borneo Malaysia. SRAs indicated a significant risk to embryonic development associated with the observed arsenic concentrations. Furthermore, the concentrations of coplanar PCBs represented 3-300 times the ADI values set by the World Health Organization. CONCLUSIONS: The concentrations of POPs and heavy metals reported in C mydas eggs from markets in Peninsular Malaysia pose considerable risks to sea turtle conservation and human health

    Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms?

    Get PDF
    Aim:The negative correlation between temperature and body size of ectothermic animals (broadly known as the temperature‐size rule or TSR) is a widely observed pattern, especially in aquatic organisms. Studies have claimed that the TSR arises due to decreased oxygen solubility and increasing metabolic costs at warmer temperatures, whereby oxygen supply to a large body becomes increasingly difficult. However, mixed empirical evidence has led to a controversy about the mechanisms affecting species’ size and performance under different temperatures. We review the main competing genetic, physiological and ecological explanations for the TSR and suggest a roadmap to move the field forward. Location: Global. Taxa: Aquatic ectotherms. Time period: 1980–present. Results: We show that current studies cannot discriminate among alternative hypotheses and none of the hypotheses can explain all TSR‐related observations. To resolve this impasse, we need experiments and field‐sampling programmes that specifically compare alternative mechanisms and formally consider energetics related to growth costs, oxygen supply and behaviour. We highlight the distinction between evolutionary and plastic mechanisms, and suggest that the oxygen limitation debate should separate processes operating on short, decadal and millennial time‐scales. Conclusions: Despite decades of research, we remain uncertain whether the TSR is an adaptive response to temperature‐related physiological (enzyme activity) or ecological changes (food, predation and other mortality), or a response to constraints operating at a cellular level (oxygen supply and associated costs). To make progress, ecologists, physiologists, modellers and geneticists should work together to develop a cross‐disciplinary research programme that integrates theory and data, explores time‐scales over which the TSR operates, and assesses limits to adaptation or plasticity. We identify four questions for such a programme. Answering these questions is crucial given the widespread impacts of climate change and reliance of management on models that are highly dependent on accurate representation of ecological and physiological responses to temperature

    Electrical detection of 31P spin quantum states

    Get PDF
    In recent years, a variety of solid-state qubits has been realized, including quantum dots, superconducting tunnel junctions and point defects. Due to its potential compatibility with existing microelectronics, the proposal by Kane based on phosphorus donors in Si has also been pursued intensively. A key issue of this concept is the readout of the P quantum state. While electrical measurements of magnetic resonance have been performed on single spins, the statistical nature of these experiments based on random telegraph noise measurements has impeded the readout of single spin states. In this letter, we demonstrate the measurement of the spin state of P donor electrons in silicon and the observation of Rabi flops by purely electric means, accomplished by coherent manipulation of spin-dependent charge carrier recombination between the P donor and paramagnetic localized states at the Si/SiO2 interface via pulsed electrically detected magnetic resonance. The electron spin information is shown to be coupled through the hyperfine interaction with the P nucleus, which demonstrates the feasibility of a recombination-based readout of nuclear spins

    Implementation of routine outcome measurement in child and adolescent mental health services in the United Kingdom: a critical perspective

    Get PDF
    The aim of this commentary is to provide an overview of clinical outcome measures that are currently recommended for use in UK Child and Adolescent Mental Health Services (CAMHS), focusing on measures that are applicable across a wide range of conditions with established validity and reliability, or innovative in their design. We also provide an overview of the barriers and drivers to the use of Routine Outcome Measurement (ROM) in clinical practice

    Combinatorial Roles of Heparan Sulfate Proteoglycans and Heparan Sulfates in Caenorhabditis elegans Neural Development

    Get PDF
    Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease

    Boundary entropy of supersymmetric Janus solutions

    Get PDF
    In this paper we compute the holographic boundary entropy for half-BPS Janus deformations of the AdS3×S3×T4AdS_3\times S^3\times T^4 vacuum of type IIB supergravity. Previous work \cite{Chiodaroli:2009yw} has shown that there are two independent deformations of this sort. In one case, the six-dimensional dilaton jumps across the interface, while the other case displays a jump of axion and four-form potential. In case of a jump of the six-dimensional dilaton, it is possible to compare the holographic result with the weak-coupling result for a two-dimensional interface CFT where the radii of the compactified bosons jump across the interface. We find exact agreement between holographic and CFT results. This is to be contrasted with the holographic calculation for the non-supersymmetric Janus solution, which agrees with the CFT result only at the leading order in the jump parameter. We also examine the implications of the holographic calculation in case of a solution with a jump in the axion, which can be associated with a deformation of the CFT by the Z2Z_2-orbifold twist operator.Comment: 35 pages, pdf-LaTeX, 5 figures, v2: minor changes, typos corrected, reference adde
    corecore