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1 Introduction

Conformal field theories with boundaries or interfaces are the object of many interesting
applications. A conformal boundary in a d-dimensional conformal field theory is a co-
dimension one surface that is invariant under d−1-dimensional conformal transformations.
In condensed matter physics, these theories are used to describe impurities in critical
systems. Cardy [1] initiated the project of classifying all conformal boundary conditions
for two-dimensional CFTs. In string theory, boundary conformal field theories are employed
for the world-sheet description of D-branes.
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Conformal interfaces provide a generalization of boundary CFTs. In an interface the-
ory, two different conformal theories, CFT1 and CFT2, are separated by a hypersurface
of co-dimension one. The folding trick [2, 3] relates a two-dimensional conformal interface
theory to a boundary CFT in the tensor product CFT1 ⊗ CFT2. Consequently, the fold-
ing trick can be employed to classify possible interface theories, calculate reflection and
transmission coefficients for bulk excitations, study bulk and boundary perturbations and
renormalization group flows.

In this paper, we will examine the boundary entropy, which can be obtained from the
ground state degeneracy, or g-factor, of the boundary CFT [4]. The boundary entropy of the
folded theory can be interpreted as the entropy associated with the interface. This quantity
is universal and constitutes the analogue of the central charge for a boundary CFT. The
boundary entropy can help classify conformal boundary conditions and give information
about the low energy spectrum of the system. In fact, this quantity is measurable in
experiments, as demonstrated by studies in candidate materials exhibiting the Kondo-
effect [5]. In [6] it was further argued that the boundary entropy is related to the finite
part of the entanglement entropy.

The AdS/CFT correspondence [7–9] is a powerful tool for studying conformal field the-
ories employing dual gravitational theories in Anti de-Sitter spacetimes. In particular, the
construction of defects and interfaces in the probe approximation was initiated in [3, 10, 11],
with the analysis of branes spanning AdSd submanifolds inside an AdSd+1 space.

Moreover, the so-called Janus-solution was constructed in [12]. This solution is a fully
back-reacted solution of type IIB supergravity that is locally asymptotic to AdS5×S5. The
Janus solution is the holographic dual of an interface theory in which the gauge coupling is
constant throughout the bulk of two 3+1-dimensional half-spaces, but is allowed to jump
across a planar 2+1-dimensional interface, where the half-spaces are glued together.

The literature examines many generalizations of the original Janus solution [13–23],
including solutions where the interface preserves up to one half of the supersymmetries of
the bulk theory.

In the present paper, we study supersymmetric solutions of type IIB supergravity
which are locally asymptotic to AdS3 × S3 × T 4. These solutions were first constructed
in [24],1 and are the holographic duals of various marginal deformations of two-dimensional
N = (4, 4) super-conformal field theory.

A prescription for the holographic calculation of the entanglement entropy of a con-
formal field theory was given in [28, 29]. In [30] this holographic prescription was used to
calculate boundary entropy for probe branes and for a non-supersymmetric Janus solution
with AdS3 × S3 asymptotics.

The goal of the present paper is to calculate the boundary entropy holographically for
the half-BPS Janus solution of [24] and compare the result with a weak-coupling calculation
in the dual two-dimensional CFT. In particular, we specialize to the case where only D1-
and D5-brane charges are present. In this case, the Janus solution describes an interface
where two operators in the CFT corresponding to the six dimensional dilaton and to the
linear combination of the axion and RR four form.

1For earlier work in this direction see [25–27].
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The main result of this paper is the exact agreement between the two calculations in
the case in which the interface CFT displays only a jump of the T 4 volume across the
interface. This is in contrast to the non-supersymmetric case where the calculations only
agree to the leading order in the deformation parameter. While we have not performed
a rigorous calculation in the presence of Z2 orbifold twist operator deformation jump on
the CFT side, we have a number of observations, as explained in section 6, that suggest
complete agreement with the supergravity result also in this case.

The organization of the paper is as follows. In section 2, we briefly review the boundary
entropy and its relation to the entanglement entropy. In addition, we give a brief review
of the prescription for the holographic calculation of the entanglement entropy discussed
in [28, 29]. In section 3, we discuss the regularization near the boundary of the AdS3 space
which will be important for the calculation of the boundary entropy. In section 4, we review
the non-supersymmetric AdS3 Janus solution found in [31] and the holographic calculation
of the interface entropy performed in [30]. We pay particular attention to the regularization
of the holographic entropy function. In section 5, we generalize the framework for the
holographic computation of the entanglement entropy introduced in [28, 29] to the case
of a spacetime with geometry of the form AdSp × Sq × Σ, where Σ is a two-dimensional
surface. We examine the supersymmetric Janus solution obtained in [24], and compute
the holographic entanglement entropy as a function of the deformation parameters. In
section 6, we perform the CFT calculation of the boundary entropy in case of a jump in
the radii of the compact bosons and find exact agreement with the result from section 5.
Moreover, we explore the implications of our result on the properties of correlators of Z2

twist fields. We conclude the paper with a discussion of our results.

2 Boundary and entanglement entropy

The logarithm of the partition function for a two-dimensional conformal theory defined on
a spatial segment of length L is given by

logZ ∼ log tr(e−βHAB ) = log(gAgB) +
cπ

6β
L (2.1)

This expression is valid in the limit L � β. Here HAB is the open string Hamiltonian
associated with the conformal boundary conditions on the two ends of the strip, denoted
by A and B. The universal factor gA is interpreted as the ground state degeneracy, or
g-factor, associated with the conformal boundary A [4]. A modular transformation relates
the open string annulus partition function to a closed string cylinder partition function,

Z = 〈A | e−LHcl | B〉 (2.2)

where | A〉 is the boundary state which realizes the boundary condition A on the closed
string channel CFT. In the limit L/β →∞, it can be shown that the gA factor is given by

gA = 〈0 | A〉 (2.3)

The logarithm of gA is called the boundary entropy and counts the ground state degeneracy
of the boundary theory.
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Figure 1. Minimal surface for the holographic calculation of boundary entropy.

It has been argued in [6] (see also [30] for a recent discussion) that the boundary entropy
can be associated with the entanglement entropy in a system with a boundary. Consider a
CFT defined on a half-line with a conformal boundary condition A at x = 0. The system
can be divided into a subsystem A, defined on the interval [0, l], and its complement B,
defined on [l,∞]. The total space of states is given by the product H = HA ⊗ HB. A
reduced density matrix can be defined by tracing over all states in B,

ρA = trHBρ (2.4)

where ρ is the density matrix of the total system (at zero temperature this is just the
projector on the ground state). The entanglement entropy is then defined as

SA = −trHAρA log ρA (2.5)

The entanglement entropy takes the following form in the limit of large l [6],

SA =
c

6
log

l

a
+ log gA (2.6)

where a is a UV cutoff and gA is precisely the g-factor (2.3) associated with the conformal
boundary A.2

A proposal to calculate the entanglement entropy of a CFTd with a dual description as
a gravitational theory in AdSd+1 was discussed in [28, 29]. Working in Poincaré coordinates,
the CFT is defined on Minkowski space R1,d−1 which can be thought of as the boundary of
AdSd+1. We consider a static setup where we choose a particular time slice on the boundary.

The subsystem A is a d-dimensional spatial region in the constant-time slice. The
boundary of A will be denoted by ∂A (see figure 1). One can find a static minimal surface
γA which extends into the AdSd+1 bulk and ends on ∂A as one approaches the boundary of
AdSd+1. The holographic entanglement entropy can then be calculated as follows [28, 29],

SA =
Area(γA)

4G(d+1)
N

(2.7)

2An additional term c′ was included in [6]. This term is non-universal and independent of the presence

of the boundary. We compute gA as the difference between the entanglement entropy with an interface and

the entropy of the same system without an interface. Therefore, c′ will not contribute to our results.
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where Area(γA) denotes the area of the minimal surface γA and G(d+1)
N is the Newton con-

stant forAdSd+1 gravity. In the case ofAdS3, the areaA is an interval and the boundary ∂A
is a collection of points. The minimal surface is a spacelike geodesic connecting these points.

3 Ultraviolet regularization of AdS-sliced metrics

The starting point for the construction of the relevant Janus solutions is the AdS2 slicing
of AdS3, given by

ds2 = R2
AdS3

(
dx2 + cosh2 x

dz2 − dt2

z2

)
(3.1)

The structure of the AdS3 boundary in this coordinates is more complicated than the one
encountered with the Poincaré patch. In particular, there are three boundary components.
Two 1 + 1-dimensional half-spaces can be reached by taking the limit x → ±∞. The two
half spaces are glued together at a 0+1-dimensional world-line, which is reached by taking
z → 0. It is useful to perform the change of coordinates,

ζ = tanh(x) (3.2)

Under this change, the metric (3.1) becomes

ds2 = R2
AdS3

(
dζ2

(1− ζ2)2
+

1
1− ζ2

dz2 − dt2

z2

)
(3.3)

In the calculation of the entanglement entropy one obtains expressions which diverge near
the boundary of the bulk spacetime. In the field theory, this phenomenon can be inter-
preted as an ultraviolet divergence. Hence, in order to perform the calculation we have
to introduce an ultraviolet regulator. The introduction of Fefferman-Graham coordinates
provides a systematic procedure for regularizing the AdS-sliced metrics, as discussed in
appendix B of [33].

In case of the metric (3.1), the Fefferman-Graham coordinates are equivalent to the
Poincaré patch, and can be introduced as

ζ =
η√

ξ2 + η2
, z =

√
ξ2 + η2 (3.4)

With this change, the metric becomes

ds2 =
R2

AdS3

ξ2

(
dξ2 + dη2 − dt2

)
(3.5)

The boundary of the bulk spacetime is now reached by ξ → 0. The interface is located at
ξ = 0, η = 0. Note that there are subtle issues with the order of limits if one approaches
the boundary and the interface at the same time.

The global coordinate change to a Fefferman-Graham system is not known for the
supersymmetric Janus solution employed in this paper. In the following analysis, we will
be interested mainly in imposing an ultraviolet cutoff in the region away from the interface,
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i.e. where z � 0. Note that a more complete analysis is needed for holographic calculations
of bulk/boundary operator expansions in the CFT, as one is interested in the behavior of
the solution as z → 0.

By taking x→ ±∞ and keeping z finite, one reaches the boundary staying away from
the interface. In this limit, we will encounter metrics with a slightly more general form
than (3.1),

lim
x→±∞

ds2 = R2
AdS3

(
dx2 +

λ±
4
e±2xdz

2 − dt2

z2

)
+ o(1) (3.6)

One can absorb the constant λ± by a shift in x,

x = x̃∓ 1
2

log(λ±) (3.7)

and one gets

lim
x→±∞

ds2 = R2
AdS3

(
dx̃2 +

1
4
e±2x̃dz

2 − dt2

z2

)
+ o(1) (3.8)

In this limit, the Fefferman-Graham coordinate change becomes

x̃→ +∞, ξ → 0, η > 0 : e−2x̃ =
1
4
ξ2

η2
, z = η

(
1 +

1
2
ξ2

η2

)
x̃→ −∞, ξ → 0, η < 0 : e2x̃ =

1
4
ξ2

η2
, z = |η|

(
1 +

1
2
ξ2

η2

)
(3.9)

The above equations were obtained using the relations

x̃→ +∞, ζ = 1− 2e−2x̃ + · · ·
x̃→ −∞, ζ = −1 + 2e2x̃ + · · · (3.10)

In both cases, the metric becomes

lim
|x|→±∞

ds2 =
R2

AdS3

ξ2

(
dξ2 + dη2 − dt2

)
+ · · · (3.11)

The interface is located at η = 0, and in the two cases the coordinate η is restricted to
η > 0 and η < 0 respectively. Note that near η = 0 the change of coordinates is more
complicated. In particular, the coordinate change (3.9) appears not to be smooth at η = 0.
However, this change of coordinates is valid as long as one is not approaching the interface
while approaching the boundary. If we now set the cutoff at ξ = ε and consider a point
|η| = z0, we can use (3.7) and (3.9) to obtain a relation between the cutoff ε and x in the
two asymptotic regions,

x→ +∞ : ε =
2z0√
λ+

e−x∞

x→ −∞ : ε =
2z0√
λ−

ex−∞ (3.12)

– 6 –
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4 Non-supersymmetric Janus solution

The boundary entropy for a non-supersymmetric Janus solution with AdS3 asymptotics was
calculated in [30]. We reproduce the result of [30] by introducing an ultraviolet regulator
near the AdS3 boundary.

The non-BPS Janus deformation of the AdS3×S3×T 4 vacuum of type IIB supergravity
was found in [31]. The ten-dimensional metric is given by

ds2 = e
φ
2
(
ds2

3 + ds2
S3

)
+ e−φ/2ds2

M4
(4.1)

where the three-dimensional metric ds2
3 is

ds2
3 = R2

AdS3

(
dx2 + f(x)ds2

AdS2

)
(4.2)

the function f(x) has the following expression,

f(x) =
1
2

(1 +
√

1− 2γ2 cosh(2x)
)

(4.3)

The dilaton is given by

φ(x) = φ0 +
1√
2

log

(
1 +

√
1− 2γ2 +

√
2γ tanhx

1 +
√

1− 2γ2 −
√

2γ tanhx

)
(4.4)

Note that if we consider the compactification of the ten-dimensional theory to six-
dimensions, the resulting action is not in the Einstein frame. To bring the six-dimensional
action to the Einstein frame we have to multiply the six dimensional part of the metric by
e−φ/2,

ds2
6,E = R2

AdS3

(
dx2 + f(x)ds2

AdS2

)
+R2

AdS3

(
dy2 + sin2 y ds2

S2

)
(4.5)

The expansion of f(x) as x→ ±∞ is

lim
x→±∞

f(x) =
1
4

√
1− 2γ2e±2x + o(1) (4.6)

Comparison with (3.6) shows that in this case the constants λ± are given by

λ± =
√

1− 2γ2 (4.7)

4.1 Holographic boundary entropy

The geodesic which was used in [30] to compute the entanglement entropy has a particularly
simple form: the z coordinate stays constant,

z = z0 (4.8)

while x varies from −∞ to +∞. This corresponds to a symmetric region around the
interface as depicted in figure 2.

– 7 –
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Figure 2. (a) Minimal surface for the holographic entanglement entropy in Poincare coordinates
(b) Minimal surface in the AdS2 slicing of AdS3.

With this choice, the subsystem A is a symmetric interval around the interface given
by [−z0, z0]. In this particular case, the geodesic length is given by

Γ(γ) = RAdS3

∫
dx = RAdS3

(
x∞(γ)− x−∞(γ)

)
(4.9)

where x±∞ is the x coordinate evaluated at the cutoff. We can now use the relation between
x±∞ and the cutoff ε,

x∞ = − log ε− 1
2

log λ+ + log(2z0)

x−∞ = log ε+
1
2

log λ− − log(2z0) (4.10)

Hence

Γ(γ)/RAdS3 = x∞(γ)− x−∞(γ)

= −2 log ε− 1
2

(log λ+ + log λ−) + 2 log(2z0)

= −2 log ε− log(
√

1− 2γ2) + 2 log(2z0) (4.11)

The entanglement entropy is then given by the difference between the geodesic length in
the Janus geometry and the length in AdS3 evaluated at the same value of the cutoff ε.
The difference of the two lengths is then finite and independent of the cutoff,

Sbdy =
Γ(γ)− Γ(0)

G3
= −RAdS3

4G3
log(

√
1− 2γ2) = ND1ND5 log

1√
1− 2γ2

(4.12)

We used the Brown-Henneaux formula [34] for the central charge of the the CFT,

3RAdS3

2G3
= c = 6ND1ND5 (4.13)

ND1/D5 are the number of D1- and D5-branes which realize the CFT. With equation (4.12)
we have reproduced the result for the boundary entropy (4.12) found in [30].

– 8 –
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Figure 3. (a) Plot of the dilaton e−2φ for the deformation θ = 0, ψ = 1
2 depicting the jump in the

dilaton as x → ±∞. (b) Plot of the axion χ for the solution ψ = 0, θ = 1
2 depicting the jump in

the axion as x→ ±∞.

5 Supersymmetric Janus solution

In this section we will calculate the holographic boundary entropy for the supersymmetric
Janus solution found in [24]. More details about the solution can be found in appendix A.

We consider type IIB supergravity compactified on M4, where M4 is either K3 or T 4.
In the present paper we will use a four-torus since the dual CFT is simpler.

The ten-dimensional metric ansatz is a fibration of AdS2×S2×M4 over a two dimen-
sional Riemann surface Σ

ds2 = f2
1ds

2
AdS2

+ f2
2ds

2
S2 + f2

3ds
2
M4

+ ρ2dzdz̄ (5.1)

All fields will depend on the coordinates z, z̄ of Σ. For the supersymmetric Janus solution,
Σ is an infinite strip with coordinates

w = x+ iy, x ∈ [−∞,+∞], y ∈ [0, π] (5.2)

The boundaries of the strip are at y = 0, π. The supersymmetric Janus solution depends
on four parameters k, L, θ and ψ. ψ parameterizes the jump of the six-dimensional dilaton
across the interface and θ parameterizes the jump of the axion.3 Note that setting ψ = 0
and θ = 0 gives the AdS3 × S3 vacuum. The dilaton and axion are given by (see figure 3)

e−2φ = k4 cosh2(x+ ψ)sech2ψ +
(

cosh2 θ − sech2ψ
)

sin2 y(
coshx− cos y tanh θ

)2 (5.3)

χ = −k
2

2
sinh 2θ sinhx− 2 tanhψ cos y

coshx cosh θ − cos y sinh θ
(5.4)

3A constant c which appeared in [24] has been set to one. Moreover, in the previous paper we used the

scalar Φ which is related to the standard dilaton by φ = −2Φ.
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The metric factors for Σ and T 4 are given by

ρ4 = e−φ
L2

k2

cosh2 x cosh2 θ − cos2 y sinh2 θ

cosh2(x+ ψ)
cosh4 ψ

f4
3 = e−φ

4
k2

coshx cosh θ − cos y sinh θ
coshx cosh θ + cos y sinh θ

(5.5)

The following expressions for the AdS2 and S2 metric factors will be useful,

f2
1

ρ2
=

cosh2
(
x+ ψ

)
cosh2 θ cosh2 ψ

ρ2

f2
2

=
1

sin2 y
+

cosh2 θ cosh2 ψ − 1
cosh2

(
x+ ψ

) (5.6)

The Page charges, defined in appendix A, can be calculated for the present solution. One
finds that the fundamental string and NS5-brane charges vanish, i.e. QF1 = 0 and QNS5 =
0. The D1- and D5-brane charges are given by

QD5 = 4π2kL coshψ cosh θ

QD1 =
16π2L

k
coshψ cosh θ (5.7)

The dual CFT is a N = (4, 4) superconformal field theory which can be understood, at
a particular point of its moduli space, as the (M4)QD1QD5/SQD1QD5

orbifold sigma-model.
The central charge of the CFT can be expressed in terms of the charges as follows

c =
6

4πk2
10

QD1QD5 =
3× 32 π3L2

k2
10

cosh2 ψ cosh2 θ (5.8)

The limit x → ±∞ corresponds to approaching the AdS boundary, where the scalar
fields behave as follows

lim
x→±∞

e−φf4
3 = 4k2 e∓2ψ

cosh2 ψ
(5.9)

This combination of scalars is precisely the six-dimensional dilaton, and is dual to the
volume of the four-torus of the orbifold CFT. Hence, the deformation corresponds to an
interface CFT where the volume jumps across the interface.

Similarly, the combination

lim
x→±∞

e
φ
2 f2

3χ− 4
e−

φ
2

f2
3

C4 = ±4k sinh θ (5.10)

is dual to the Z2 orbifold twist operator of the (M4)N/SN orbifold. Solutions with non-
zero θ correspond to interfaces in which the orbifold CFTs on each side are at two different
points in their moduli space.

– 10 –
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5.1 Calculation of the holographic boundary entropy

The calculation of the holographic boundary entropy for the non-supersymmetric Janus
solution was simplified by the fact the three-sphere was left undeformed. The calculation
of the minimal surface could be done by compactifying the ten-dimensional theory on S3

and T 4 obtaining an effective three-dimensional theory. This reduction is equivalent to
considering a minimal surface wrapping these spaces, in accordance with the principle that
the entanglement entropy is a trace over all states.

Supersymmetric Janus solution in various dimensions have a more complicated struc-
ture. In general, their geometry is given by an AdSp×Sq fibration over a Riemann surface
Σ. In analogy with the simpler case of non-supersymmetric solutions, we propose to com-
pute the entanglement entropy using a p+ q-dimensional minimal surface which spans the
sphere Sq as well as the Riemann surface Σ.

It is useful to consider an intermediate step and compactify the metric (5.1) along the
compact directions. In order to have the correct Einstein-Hilbert action, we rescale by a
factor of f−2

3 to obtain the resulting metric in the six-dimensional Einstein frame,

ds2
6,E = ρ2f2

3

(
cosh2(x+ ψ)

cosh2 ψ cosh2 θ

dz2 − dt2

z2
+ dx2 + dy2

)
+ f2

2 f
2
3ds

2
S2 (5.11)

We now use the following expressions for the limit x→ ±∞,

lim
x→±∞

e−φ = k2e±ψsechψ

lim
x→±∞

ρ2 = L e∓ψ/2 cosh θ cosh3/2 ψ

lim
x→±∞

f2
3 = 2

e±ψ/2

cosh1/2 ψ

lim
x→±∞

f2
2 = ρ2 sin2 y = L e∓ψ/2 cosh θ cosh3/2 ψ sin2 y (5.12)

Hence the metric (5.11) becomes

lim
x→±∞

ds2
6,E = 2L cosh θ coshψ

(
e±2ψ

cosh2 ψ cosh2 θ

e±2x

4
dz2 − dt2

z2
+ dx2 + dy2 + sin2 yds2

S2

)
(5.13)

We can then identify

R2
AdS3

= 2L cosh θ coshψ (5.14)

Note that the AdS radius is the same on both sides of the interface. The constants λ± are
then given by

λ± =
e±2ψ

cosh2 ψ cosh2 θ
(5.15)

This expression gives us the relevant formula for the cutoff. We consider the four-
dimensional minimal surface located at z = z0, t = t0 and spanning x, y and the S2
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directions. Using the six-dimensional metric (5.11) we obtain

A(θ, ψ) =
∫
dΩ2

∫
dx

∫
dy (f2

2 f
2
3 )× (ρ2f2

3 )

= VS2

∫
dxdy

H2ρ2

f2
1

= 4L2 cosh2 ψ cosh2 θVS2

∫
dy sin2 y

∫
dx

= 4L2 cosh2 ψ cosh2 θVS3

∫
dx

= R4
AdS3

VS3

∫
dx (5.16)

We need to compare this area to the one of a minimal surface in an AdS3 × S3 space with
the same curvature radius. Instead of (5.11), we have the metric

ds2
AdS3×S3 = R2

AdS3

(
e±2x

4
dz2 − dt2

z2
+ dx2 + dy2 + sin2 yds2

S2

)
(5.17)

which is the AdS3 × S3 metric with the same cosmological constant as (5.11). The area in
AdS3 × S3 is

A0 = R4
AdS3

∫
dΩ2

∫
dx

∫
dy sin2 y = R4

AdS3
VS3

∫
dx (5.18)

and the difference is

A(θ, ψ)−A0 = R4
AdS3

VS3

(
Γ(θ, ψ)− Γ(0)

)
(5.19)

where the geodesic length Γ was defined in (4.9). We can now apply the cutoff prescription
discussed in section 3 and get

A(θ, ψ)−A0 = −R4
AdS3

VS3

1
2
(

log λ+ + log λ−
)

= 2R4
AdS3

VS3 log
(

cosh θ coshψ
)

(5.20)

giving the boundary entropy

Sbdy =
A(θ, ψ)−A0

4G6

=
16π2L2

4G6
cosh2 ψ cosh2 θ log

(
cosh θ coshψ

)
=

32π3L2

k2
10

cosh2 ψ cosh2 θ log
(

cosh θ coshψ
)

(5.21)

where we used the relation between the Newton’s constant and k10,
1

16πGN
=

1
2k2

10

(5.22)

In particular, setting θ = 0 gives

Sbdy =
32π3L2

k2
10

cosh2 ψ log(coshψ) (5.23)

This expression gives the boundary entropy for a Janus solution in which only the six-
dimensional dilaton jumps across the interface.
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6 CFT calculation of the boundary entropy

In this section we will discuss the calculation of the boundary entropy on the CFT side.
Preservation of one half of the supersymmetries imposes specific boundary conditions on
the fields at the interface. We use results in the literature to calculate the boundary entropy
for the case where only the coupling constant jumps across the interface.

6.1 Supersymmetric boundary conditions

We now discuss the supersymmetries which are preserved in the presence of an interface in
two-dimensional N = (4, 4) super conformal field theory. For simplicity, we will focus on
the free field limit, where the target space is simply the orbifold (T 4)N/SN . The free field
action of the theory is given in [40], and can be written as follows in terms of the complex
fields defined there,

S =
1
2

∫
dτdσ

1
2

(∂+X
I∂−X

I† + ∂−X
I∂+X

I†)

−
(

ΨI∂−ΨI† − 1
2
∂−(ΨIΨI†) + Ψ̃I∂+Ψ̃I† − 1

2
∂+(Ψ̃IΨ̃I†)

)
(6.1)

The fields are functions of σ± = τ ± σ, and summations over the indices I ∈ {1, 2} are
implied. This action is in Lorentzian signature. We also have suppressed the indices A
displayed in [40], which run over the N copies of the four-torus. Fermionic fields with and
without a tilde correspond to the right and left-movers respectively.

The action is invariant up to boundary terms under the four supersymmetric transfor-
mations. These terms are given by

δ1S =
∫
dτε1(Ψ1∂−X

2 −Ψ2†∂−X
1), δ1†S =

∫
dτε1†(Ψ1†∂−X

2† −Ψ2∂−X
1†),

δ2S =
∫
dτε2(Ψ2∂−X

2 −Ψ1†∂−X
1), δ2†S =

∫
dτε2†(Ψ2†∂−X

2† −Ψ1∂−X
1†) (6.2)

where the transformations are generated by the four left-moving charges Ga, Ga†, a ∈ {1, 2}.
The above expressions are evaluated at the boundary located at σ = σ0.

The right-moving supercharges G̃a, G̃a† give rise to boundary terms that can be ob-
tained from the above expressions exchanging + and −.

One then has to determine the boundary conditions satisfied by the fields at the inter-
face. From energy conservation at the boundary it is natural to require that(

T (σ+)− T̃ (σ−)
) ∣∣∣

σ0

= 0 (6.3)

There are however various possible choices for the boundary conditions satisfied by the
supercharges. For N = (4, 4) supersymmetries, one can generalize the A- and B-type
boundary conditions which are used in the N = (2, 2) case. The boundary conditions
satisfied by the R-symmetry current can then be deduced from those of the supercharges.
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Figure 4. (a) An interface where radius of a compact boson jumps at x = 0. (b) Folded boundary
CFT and two bosons having different radiii. (c) Boundary conditions are equivalent to a diagonal
D1 brane in a two dimensional torus.

Generally, if the interface preserves the global SO(4) symmetry, the supercharges have to
satisfy (

G1

G2†

)
±

(
G̃1

G̃2†

)
= 0,(

G1†

G2

)
±

(
G̃1†

G̃2

)
= 0 (6.4)

The analog of B-type boundary conditions is obtained by taking the minus sign in
the above equations. In this case the SU(2)L × SU(2)R R-currents satisfy the boundary
conditions

Jα(σ+)− J̃α(σ−) = 0, α ∈ {1, 2, 3} (6.5)

Now we will examine super conformal field theories with two branches joining along
the same boundary. For simplicity, we will consider only jumps in the radii of the target
space torus across the interface. Using the folding trick as in [3] (see figure 4), we can
show that this setup is equivalent to considering the direct product of two N = (4, 4) super
conformal field theories with a boundary.

In the free field limit, the boundary conditions satisfied by the bosons would again be
given by [3, 30]

ẊI
1

rI1
=
ẊI

2

rI2
|σ=σ0 ,

∑
i=1,2

rIiX
′I
i |σ=σ0 = 0 (6.6)

Picking the B-type conditions as discussed above, we have that an infinitesimal transfor-
mation generated by G1

i − G̃1
i produces the following boundary terms in the action of the

folded theory,

δ1−1̃S =
∑
i=1,2

∫
dτεi

(
r2
i (Ψ

1
i − Ψ̃1

i )
Ẋ2
i

r2
i

− (Ψ1
i + Ψ̃1

i )
r2
i

(r2
iX
′2
i )

−r1
i (Ψ

2† − Ψ̃2†)
Ẋ1
i

r1
i

+
(Ψ2† + Ψ̃2†)

r1
1

r1
1X
′1
i

)
(6.7)
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where we have taken εi1 = −εi
1̃

= εi. The boundary terms would vanish upon imposing the
boundary conditions (6.6) in case we have εi = ε and∑

i=1,2

rJi (ΨI
i − Ψ̃I

i ) = 0,
ΨI

1 + Ψ̃I
1

rJ1
=

ΨI
2 + Ψ̃I

2

rJ2
(6.8)

Here, J 6= I. These conditions are precisely the fermionic analog of (6.6). We could
repeat this procedure with the other three left- and right-moving pairs of supersymmetric
transformations. Since the same fermionic fields ΨI are transformed to different bosonic
fields XI , the radii rIi of the bosonic fields XI

i in each branch are not independent for
different I. The simplest choice that would ensure the preservation of one copy of theN = 4
supersymmetry would be setting all the radii at the different branches to the same value, i.e.

rIi = rJi = ri (6.9)

The conformal supercharges at each junction would then satisfy the boundary conditions∑
i=1,2

Ti − T̃i = 0,
∑
i=1,2

Gai − G̃ai = 0 (6.10)

Note that these boundary conditions are consistent with the structure of the supergravity
solutions. Since the internal moduli of the four-torus are turned off, all the radii of the
torus are treated in the same way and the jump in radius is the same for all of them.
Furthermore, the metric ansatz for the BPS Janus solution has only a manifest S2 factor
and, consequently, only SU(2) isometry. Similarly, the boundary condition (6.5) preserves
only a combination of the SU(2)L × SU(2)R superconformal R-symmetry.

6.2 Calculation of boundary entropy on the CFT side

As a starting point we consider the conformal field theory defined by a single boson on a
circle of radius R. This CFT has central charge c = 1. The interface is defined by a jump
of the radius of the boson across x = 0, i.e. the boson has radius R = r− for x < 0 and
radius R = r+ for x > 0. The folding trick relates this theory to a CFT of two bosons with
radii r± defined on the half-space x > 0. The boundary condition on the single boson is
given by (6.6) setting i = 1, 2 and I = 1,

∂τ (cos θ X1 − sin θ X2)|σ=0 = ∂σ(sin θ X1 + sin θ X2)|σ=0 = 0 (6.11)

Hence, after folding, these conformal interface conditions imply boundary conditions
which describe a D1-brane on the diagonal of a rectangular two-torus with radii r+ and
r−. The boundary entropy of this boundary CFT is defined to be

g = 〈0|B〉 (6.12)

The g-factor was calculated in [35] and is given by the tension of the diagonal D1-brane
on the torus

g =
1√
2

√
r−
r+

+
r+

r−
(6.13)

The boundary entropy is then given by the logarithm of the g-factor.
For a tensor product of n bosons with the same jump in radius, the g-factor is gn and

hence the boundary entropy is given by S = n log g. Since the g-factor is related to the ten-
sion of the D-brane, the result is also valid for superconformal field theories with fermions.
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6.3 Boundary entropy for non-susy Janus

As argued in [30], the sigma-model for the D1/D5 CFT is associated with the string frame
metric, taking the form ∫

d2ze−φGsµν∂X
µ∂Xν (6.14)

It follows from the Einstein frame metric (4.1) that the string frame metric does not have
any factor of eφ, hence one identifies the radius on the boundary with the asymptotic value
of e−φ/2. Therefore,

r+

r−
=

limx→∞ e
−φ/2

limx→−∞ e−φ/2
=

(
1 +
√

2γ
1−
√

2γ

) 1
2
√

2

(6.15)

The D1/D5 CFT has central charge c = 6N1N5 and thus 4N1 ×N5 bosons. The solution
treats all internal directions equally, so that all the bosons jump by the same amount. The
CFT calculation therefore gives

Sbdy = 4N1N5 log

 1√
2

√√√√(1 +
√

2γ
1−
√

2γ

) 1
2
√

2

+

(
1−
√

2γ
1 +
√

2γ

) 1
2
√

2

 (6.16)

Note that (6.16) agrees with the holographic result (4.12) obtained from the non-BPS Janus
solution up to quadratic order in an expansion around γ = 0. However, the agreement does
not hold for higher-order terms.

6.4 Boundary entropy for BPS Janus

As it was argued in section 6.1, the supersymmetric boundary conditions imply a jump
of all scalars by the same amount. In this section we repeat the CFT calculation of the
boundary entropy using the value of the radius jumps of the BPS Janus solution (5.1). In-
terestingly, we find complete agreement between the CFT calculation and the holographic
calculation. Transforming the Einstein frame metric (5.1) to the string frame metric pro-
vides an expression for the radii r± of the compact bosons

r± = lim
x→±∞

(
f2

3 e
−φ/2

) 1
2 (6.17)

The relevant supergravity solution is the one where θ = 0, i.e. there is no jump in the mode
dual to the Z2 orbifold twist operator. In this case, one finds

r+

r−
= eψ (6.18)

and the boundary entropy for a single boson (6.13) becomes

g =
√

coshψ (6.19)

Hence, the boundary entropy for the D1/D5 CFT becomes

Sbdy = 4N1N5 log(g) =
2
3
c log(g) =

32π3L2

k2
10

cosh2 ψ log cosh(ψ) (6.20)

where we used the formula (5.8) for the central charge. This result agrees exactly with the
holographic result obtained in equation (5.23).
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6.5 Deformation by the Z2 orbifold twist operator

It is known that the radius deformation of a compact boson is an exactly marginal defor-
mation of the bulk theory, since the operator

δS = λ

∫
d2z ∂X∂̄X (6.21)

is a U(1)×U(1) current-current deformation [36]. The case of an interface located at x = 0
is more complicated since the deformation is now not uniform,

δS = λ

∫
d2z

(
θ(x)∂X∂̄X − θ(−x)∂X∂̄X

)
(6.22)

where θ(x) is the step function. However, it has been shown in [37] that even in the
presence of an interface, the perturbation is exactly marginal and modifies the gluing
conditions according to (6.11). It seems likely that this statement can also be directly
proven in conformal perturbation theory.

The general holographic result for the boundary entropy contains two deformation
parameters, θ and ψ respectively

Sbdy =
32π3L2

k2
10

cosh2 ψ cosh2 θ log
(

cosh θ coshψ
)

= 2ND1ND5 log
(

cosh θ coshψ
)

(6.23)

In the previous section we have set θ to zero. The deformation parameter θ corresponds
to the Z2 orbifold twist operator. It is intriguing that the parameter controlling the radius
deformation and the Z2 orbifold twist deformation appear in a completely symmetric way
in the expression (6.23).

It is tempting to conjecture that (6.23) is the exact result of a CFT computation
including both radius and orbifold deformations.

The orbifold deformation is obtained by perturbing the theory by a dimension (h, h̄) =
(1, 1) operator T0. The operator T0 can be obtained from the following operator product
expansion,

T0(z, z̄) =
1

2
√

2

(
εab

∮
dw G+a(w)

∮
dw̄ Ḡ+b(w̄)Σ(1/2,1/2)(z, z̄)

+εab

∮
dw G−a(w)

∮
dw̄ Ḡ−b(w̄)Σ̄(1/2,1/2)(z, z̄)

)
(6.24)

Here Gab(z) is the superconformal generator and a labels the SU(2)R charge, whereas b
labels the SU(2)I charge. Hence, the jump of the modulus associated with the Z2 orbifold
twist operator corresponds to a deformation of the CFT by

δS = λ

∫
d2z

(
θ(x)T0(z, z̄)− θ(−x)T0(z, z̄)

)
(6.25)

A first consequence of the result (6.23) is that under an orbifold deformation, the first
non-trivial change in the boundary entropy occurs at second order in θ and is given by

– 17 –



J
H
E
P
0
9
(
2
0
1
0
)
0
8
2

setting ψ = 0 and expanding

Sbdy =
c

6

(
θ2 − 1

6
θ4 +O(θ6)

)
(6.26)

The fact that the term linear in θ vanishes is in agreement with the result obtained by
conformal perturbation theory in [38]. As discussed in [38], the change of the g-function is
given by

δg

g
= −π

2
θAorb +O(θ2) (6.27)

Where Aorb is the one-point function of the (unintegrated) operator in (6.25). Since the one-
point function of a single twist operator evaluated in the unperturbed bulk theory vanishes,
the lowest nontrivial contribution could appear at second order, in agreement with (6.26).

Furthermore in appendix B we show that the operator product expansion of two twist
fields is given by

lim
|z−w|→0

T0(z, z̄)T0(w, w̄) =
1

|z − w|4
+ finite (6.28)

Where the singular OPE is exactly of the same form as the OPE of the ∂X∂̄X operator in
the radius deformation (6.21). The correlation functions on the plane which enter in the
conformal perturbation theory are completely determined by the singular part of the OPE.
Consequently, the radial perturbation (6.22) and the twist field perturbation (6.25) lead
to the same change in the boundary entropy. Note however that due to the complexity
of higher order conformal perturbation theory an explicit higher order calculation has not
been performed.

Another view point of the twist mode deformation may be useful here. The orbifold
point is after all one particular point in the full moduli space, and the twist modes of the
orbifold CFT are only some of the many possible Kähler moduli deformations. To take a
concrete example, consider the orbifold point T 4/Z2 of aK3 surface. The number of distinct
two forms is b2 = 22 for a K3 surface but the corresponding number on a T 4 is only 6,
which can roughly be identified with the world-sheet B-fields in the sigma model on T 4/Z2.
The remaining 16 modes arise in the sigma-model precisely as twist-fields deformations.
From this perspective then, while the twist-fields have a very different representation in
the orbifold CFT, their underlying origin in the moduli space of K33 surfaces are not so
fundamentally different from the world-sheet B fields. It is thus tempting to compare the
supergravity result with a CFT computation of the boundary entropy in the presence of
both B-field and radii jumps on a free CFT, where the jump of the B-field is taken to be
proportional to that of the twists field couplings read off from the supergravity solution,
i.e. we take B± = ±4nk sinh θ where n is a proportionality constant to be determined.
Our normalization is such that 2B couples to the operator ∂+X

1∂−X
2− ∂+X

2∂−X
1. The

computation is detailed in appendix C. The result of the computation gives, remarkably
for the naive choice of n = 1

2 , precisely g = cosh θ coshψ, yielding complete agreement with
the supergravity theory.

It would be very interesting to perform a direct calculation in the orbifold CFT, perhaps
along the lines of [37] to show that (6.23) is indeed the boundary entropy of a deformed
theory including the twist deformation.
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7 Conclusions

In this paper we have used the AdS/CFT correspondence to calculate holographically
the entanglement entropy for an interface theory given by a marginal deformation of the
(T 4)N/SN orbifold CFT. In this theory, the volume of the target space four-torus and
the mode dual to the Z2 orbifold twist operator assume different values on each side of
the interface. The calculation was performed using the half-BPS Janus solution obtained
in [24] as the gravitational dual for the interface theory.

We found exact agreement between holographic and CFT calculations in the case in
which the jump in the moduli of the conformal field theory corresponds to a change of the
six-dimensional dilaton in the supergravity solution. It appears that the boundary entropy
is protected by supersymmetry, even though it is not an index.

The supergravity solution also permits the calculation of the entanglement entropy for
a jump of the Z2 orbifold twist operator of the (T 4)N/SN orbifold CFT. It is interesting
to note that the expression for the boundary entropy is completely symmetric in the jump
parameters related to the volume and twist mode deformations.

Since the marginal operator associated with the twist mode deformation is a twist
field (denoted with T0), there is no exact conformal field calculation to compare with the
supergravity result. However, it is quite likely that the CFT calculation should agree with
the supergravity computation. This observation leads to some interesting expectations
regrading the properties of twist-field correlators. For a theory with a compact boson on
the plane, the change of radius is related to a deformation by an operator of the form JJ̄ ,
where J is the R-symmetry current. This operator is exactly marginal [36]. Furthermore,
correlation functions of an arbitrary number of J operators are obtained from the two-point
functions using Wick’s theorem. We can consider a calculation of the boundary entropy
using conformal perturbation theory along the lines of [38] for both the radius and the
twist field deformations. The result of both calculations are expected to have exactly the
same form. This observation suggests that the correlation functions for the T0 twist fields
may be identical to the ones of the JJ̄ operators.

The study of interface conformal field theories has produced very exciting new develop-
ments with their application to the description of quantum wires (see e.g. [41–43]). Systems
of quantum wires display a rich variety of interesting phenomena, with many different IR
fixed points, whose physics is yet to be understood [44]. Networks of quantum wires can
potentially be engineered using general multi-Janus solutions, and the entanglement en-
tropy is only one of the many quantities which can be calculated using the AdS/CFT
correspondence. It would be very interesting to obtain the boundary conditions at the
interface and physical observables such as transport coefficient of the system, which can be
extracted using bulk-boundary correlators in the Janus background.

In this paper, we have computed the entanglement entropy only for Janus solutions
with AdS3 asymptotics. However, the framework we have discussed at the beginning of this
section can also be applied to BPS Janus solutions in different dimensions. In particular,
it would be very interesting to obtain the entanglement entropy for the supersymmetric
Janus solutions of [20] and [22, 45].

We plan to return to these interesting topics in the future.
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A BPS interface solution

In this appendix we review the regular interface solution of type IIB supergravity which is
locally asymptotic to AdS3 × S3 ×M4 and preserves eight of the sixteen supersymmetries
of the AdS vacuum. More details can be found in [24] and [32].

A.1 Local solutions

The solutions are parameterized by two meromorphic functions A(z), B(z) and two har-
monic function H(z, z̄),K(z, z̄) (as well as their dual harmonic functions K̃(z, z̄)). All
functions depend on the coordinates of the two-dimensional Riemann surface Σ which has
a boundary. The ten-dimensional metric is given by a fibration of AdS2×S2×K3 over Σ.

ds2 = f2
1ds

2
AdS2

+ f2
2ds

2
S2 + f2

3ds
2
K3

+ ρ2dzdz̄ (A.1)

The complex three-form is

G = g(1)
a f2

1 e
a ∧ ωAdS2 + g(2)

a f2
2 e

a ∧ ωS2 , (A.2)

The self-dual five-form flux is given by

F5 = haf
2
1 f

3
2 e

a ∧ ωAdS2 ∧ ωS2 ,+h̃af4
3 e

a ∧ ωK3 (A.3)

Dilaton and axion are given by4

e−2φ =
1

4K2

(
(A+ Ā)K − (B + B̄)2

)(
(A+ Ā)K − (B − B̄)2

)
(A.4)

χ =
i

2K

(
(A− Ā)K −B2 + B̄2

)
(A.5)

The R-R four-form potential CK is given by

CK = − i
2
B2 − B̄2

A+ Ā
− 1

2
K̃ (A.6)

and the metric factor of the compact four manifold M4 is given by

f4
3 = 4

e−φK

A+ Ā
(A.7)

4In the previous paper we used φ which is related to the standard dilaton by φ = −2Φ.
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The metric factors associated with AdS2 and S2 are given by

f2
1 =

eφ

2f2
3

|H|
K

(
(A+ Ā)K − (B − B̄)2

)
(A.8)

f2
2 =

eφ

2f2
3

|H|
K

(
(A+ Ā)K − (B + B̄)2

)
(A.9)

The rank three anti-symmetric tensor fields can be expressed in terms of potentials

f2
1ρe

φ/2Re(g(1))z = ∂wb
(1) (A.10)

f2
2ρe

φ/2Re(g(2))z = ∂wb
(2) (A.11)

f2
1ρe
−φ/2Im(g(1))z + χf2

1ρe
φ/2Re(g(1))z = ∂wc

(1) (A.12)

f2
2ρe
−φ/2Im(g(2))z + χf2

2ρe
φ/2Re(g(2))z = ∂wc

(2) (A.13)

The potentials c(1,2) and b(1,2) are expressed in terms of the meromorphic and harmonic
functions as follows

b(1) = − H(B + B̄)
(A+ Ā)K − (B + B̄)2

− h1, h1 =
1
2

∫
∂wH

B
+ c.c. (A.14)

b(2) = −i H(B − B̄)
(A+ Ā)K − (B − B̄)2

+ h̃1, h̃1 =
1
2i

∫
∂wH

B
+ c.c. (A.15)

c(1) = −i H(AB̄ − ĀB)
(A+ Ā)K − (B + B̄)2

+ h̃2, h̃2 =
1
2i

∫
A

B
∂wH + c.c. (A.16)

c(2) = − H(AB̄ + ĀB)
(A+ Ā)K − (B − B̄)2

+ h2, h2 =
1
2

∫
A

B
∂wH + c.c. (A.17)

A.2 Page charges

In this section we review the expressions for the Page charges of the BPS interface. Further
details can be found in [32]. The Page charges are conserved and localized as well as related
to the quantized number of branes in a supergravity solution [39]. In type IIB the Page
charges for NS5 and D5-branes are given by

QNS5 =
∫

M3

H3, QD5 =
∫

M3

(
F̃3 + χH3

)
(A.18)

The final expressions for the five brane charges are given by

QNS5 = 4π
( ∫
C
dz ∂zb

(2) + c.c
)

QD5 = 4π
( ∫
C
dz ∂zc

(2) + c.c
)

(A.19)

Where C is a contour in the Riemann surface Σ which produces a three-sphere in the
asymptotic region together with the fibered S2. For the solutions in this paper, the Rie-
mann surface Σ is the half-plane and the contours providing homology three-spheres are
the ones which enclose a pole of the harmonic function H.
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The Page charges for D1-branes and fundamental strings are given by

QD1 = −
∫

M7

(
eφ ∗ F̃3 − 4C4 ∧H3

)
QF1 = −

∫
M7

(
e−φ ∗H3 − χeφ ∗ F̃3 + 4C4 ∧ dC2

)
(A.20)

The expressions for the one-brane charges (A.20) are more complicated due to the Hodge
dual in their definition and the presence of Chern-Simons terms. The seven-manifold
appearing in the above expressions is a product ofM4 and a homology three-sphere obtained
from a contour C just as in the case of the five brane charges.
The D1-brane charge is given by

QD1 = 4π
{∫
C

4K
A+ Ā

(A+ Ā)K − (B + B̄)2

(A+ Ā)K − (B − B̄)2
i(∂zc(1) − χ∂zb(1))dz

−2
∫
C

(
i
B2 − B̄2

A+ Ā
+ K̃

)
∂zb

(2)dz

}
+ c.c. (A.21)

The fundamental string charge is given by

QF1 = 4π
{∫
C

(
(A+ Ā)K − (B + B̄)2

)2

K(A+ Ā)
i∂zb

(1)dz + 2
(
i(B2 − B̄2)
A+ Ā

+ K̃

)
∂zc

(2)dz

−
∫
C

4K
A+ Ā

(A+ Ā)K − (B + B̄)2

(A+ Ā)K − (B − B̄)2
iχ
(
∂zc

(1) − χ∂zb(1)
)
dz

}
+ c.c. (A.22)

A.3 BPS Janus solution

The BPS Janus solution is defined on the strip with coordinates

w = x+ iy, x ∈ [−∞,+∞], y ∈ [0, π] (A.23)

The meromorphic and harmonic functions are given by

H = −iL sinh(w + ψ) + c.c. (A.24)

A = ik2 cosh θ + sinh θ coshw
sinhw

(A.25)

B = ik
cosh(w + ψ)
coshψ sinhw

(A.26)

K = i
cosh θ − sinh θ coshw

sinhw
+ c.c. (A.27)

One obtains the expressions of section 5 by plugging these functions into the formulae given
in appendix A.1 .

B Operator product of twist fields

It was argued that for the twist operator T0 given in (6.24) the two terms containing
Σ(1/2,1/2) and Σ̄(1/2,1/2) are identical (see for example [46]). It is convenient to evaluate the
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Figure 5. (a) Contour for holomorphic part before deformation (b) Contour deformation picks up
anti-commutator of G’s.

OPE as follows:

lim
z1→z2

T0(z1, z̄1)T0(z2, z̄2) =
1
2

lim
z1→z2

εab

(∮
Cz1

dw G+a(w)
∮
Cz̄1

dw̄ G̃+b(w̄)
)

Σ(1/2,1/2)(z1, z̄1)

εcd

(∮
Cz2

dy G−c(y)
∮
Cz̄2

dȳ G̃−d(ȳ)
)

Σ̄(1/2,1/2)(z2, z̄2) (B.1)

One can now deform the w-contour C (see figure 5) which surrounds z1 in such a way that
the contour will surround z2. Since G+a annihilates Σ̄ the only relevant term comes from
the OPE of two G [47]: ∮

Cy

dw G++(w)G−−(y) = T (y) + ∂yJ
3(y)∮

Cy

dw G+−(w)G−+(y) = T (y) + ∂yJ
3(y) (B.2)

Which can be seen from the fact that the contour Cy surrounds y and in contour integration
only the simple pole term in the GG OPE survives. Hence,

lim
z1→z2

T0(z1, z̄1)T0(z2, z̄2) (B.3)

= lim
z1→z2

Σ(1/2,1/2)(z1, z̄1)
∮
Cz2

dy
(
T (y) + ∂yJ

3(y)
)∮
Cz̄2

dȳ
(
T (ȳ) + ∂̄yJ

3(ȳ)
)
Σ̄(1/2,1/2)(z2, z̄2)

We use following OPE’s

T (z)Σ1/2(w) =
∂wΣ1/2(w)
z − w

+
1
2

Σ1/2(w)
(z − w)2

+ · · ·

J3(z)Σ1/2(w) =
1
2

Σ1/2(w)
z − w

(B.4)
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and hence,(
T (z) + ∂zJ

3(z)
)

Σ1/2(w) =
∂wΣ1/2(w)
z − w

+
1
2

Σ1/2(w)
(z − w)2

+ ∂z
1
2

Σ1/2(w)
z − w

=
∂wΣ1/2(w)
z − w

(B.5)

The anti-holomorphic part leads to an analogous result. Hence the T0T0 OPE (B.3) becomes

lim
z1→z2

T0(z1, z̄1)T0(z2, z̄2) = Σ(1/2,1/2)(z1, z̄1)∂z2∂z̄2Σ̄(1/2,1/2)(z2, z̄2)

= ∂z2∂z̄2
1

(z1 − z2)(z̄1 − z̄2)
+ · · ·

=
1

|z1 − z2|4
+ · · · (B.6)

Where the dots denote nonsingular terms as z1 → z2. We used the fact that the OPE of
the chiral and antichiral twist field are given by

lim
z1→z2

Σ(1/2,1/2)Σ̄(1/2,1/2) =
1

(z1 − z2)(z̄1 − z̄2)
+ · · · (B.7)

C Boundary entropy with both radii and B field jumps

Consider starting off with two compact bosons from each side of the interface, which is the
smallest number of fields that can be coupled to an antisymmetric B-field.

The action before folding is∫
σ>0

dσdτ
(
r2
i η
ab∂aX

i∂bX
i+2εabb∂aX1∂bX

2
)
+
∫
σ<0

dσdτ
(
r̃2
i η
ab∂aX̃

i∂bX̃
i+2εabb̃∂aX̃1∂bX̃

2
)

(C.1)
where i ∈ {1, 2}, and a, b ∈ {σ, τ}. After folding the theory in σ < 0, by sending σ → −σ,
we obtain the same action except b̃ changes sign. The boundary conditions following from
the vanishing of the boundary terms upon variation of the fields are given by

r2
i ∂σX

i + r̃2
i ∂σX̃

i + εij(b∂τXj − b̃∂τ X̃j) = 0, i = 1, 2

∂τX
i = ∂τ X̃

i, i = 1, 2 (C.2)

The boundary conditions (C.2) correspond to the open strings picture, where boundary
conditions are imposed on the spatial boundary σ = 0 of the world-sheet. By exchanging
σ ↔ τ one obtains the closed string picture, where a closed string propagates and the
boundary conditions are imposed at a fixed time τ = 0.

The mode expansion of the closed strings are given by (using the normalization in [35])

Xi(στ ) = xi + 2ωiσ + τGij(pj − 2Bjkωk) +
i

2

∑
n6=0

1
n

(
αiL,ne

−2inσ+ + αiR,ne
−2inσ−

)
(C.3)

where pi and ωi are the momentum and winding respectively and in our normalization
these are integers. The target space metric Gij is again simply δijr2

i , whereas Bij = b. We
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have similar expressions for the tilde variables, except the sign of b̃ is flipped. Note that
the position of the indices are important.

Using the above expansion, the boundary conditions (C.2) implies here

pi = −p̃i, ωi = ω̃i (C.4)

These relations dictate how we build the corresponding boundary state |B〉. However, to
extract the boundary entropy 〈0|B〉 we need only to know the zero modes contribution of
〈B| exp(−iπH/T )|B〉, where H is the closed string Hamiltonian and T the periodicity in
the time direction. The Hamiltonian is given by

H =
1
4

(
pµG

µνpν + 4ωµ(G−B ·G−1 ·B)µνων + 4ωµ(B ·G−1)νµpν

)
+NL +NR (C.5)

where indices µ, ν denote summation over both tilded and untilded fields. NL,R are the
level of the left and right moving modes.

Using (C.4), we can rewrite the zero-mode contribution of the Hamiltonian as a matrix
multiplication P T ·M · P ,where

P =


p1

p2

ω1

ω2

 , M =
1
4


M11 0 0 M14

0 M22 M23 0
0 M32 M33 0
M41 0 0 M44

 (C.6)

and M is a symmetric matrix where

M11 =
1
r2

1

+
1
r̃2

1

, M22 =
1
r2

2

+
1
r̃2

2

M33 = 4

(
r2

1 +
b2

r2
2

+ r̃2
1 +

b̃2

r̃2
2

)
, M44 = 4

(
r2

2 +
b2

r2
1

+ r̃2
2 +

b̃2

r̃2
1

)

M14 = −2

(
b

r2
1

+
b̃

r2
1

)
, M23 = 2

(
b

r2
2

+
b̃

r2
2

)
(C.7)

Th boundary entropy gb is then given by

gb = |detM |1/4 =
∣∣∣∣((b− b̃)2 + (r2

1 + r̃2
1)(r2

2 + r̃2
2))2

16r2
1r

2
2 r̃

2
1 r̃

2
2

∣∣∣∣1/4 (C.8)

Now using (5.10), (5.9), we take

b = −b̃ = 4nk sinh θ, ri =

√
2keψ

coshψ
, r̃i =

√
2ke−ψ

coshψ
(C.9)

For n = 1/2
gb = cosh θ coshψ (C.10)

Since we are considering two directions along T 4 at the same time in the above calculation,
the final result, including the other two orthogonal directions in T 4 and all the copies in
the symmetric product, is indeed

Sbdy = 2ND1ND5 log(cosh θ coshψ) (C.11)

in complete agreement with the supergravity result (6.23).
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