In recent years, a variety of solid-state qubits has been realized, including
quantum dots, superconducting tunnel junctions and point defects. Due to its
potential compatibility with existing microelectronics, the proposal by Kane
based on phosphorus donors in Si has also been pursued intensively. A key issue
of this concept is the readout of the P quantum state. While electrical
measurements of magnetic resonance have been performed on single spins, the
statistical nature of these experiments based on random telegraph noise
measurements has impeded the readout of single spin states. In this letter, we
demonstrate the measurement of the spin state of P donor electrons in silicon
and the observation of Rabi flops by purely electric means, accomplished by
coherent manipulation of spin-dependent charge carrier recombination between
the P donor and paramagnetic localized states at the Si/SiO2 interface via
pulsed electrically detected magnetic resonance. The electron spin information
is shown to be coupled through the hyperfine interaction with the P nucleus,
which demonstrates the feasibility of a recombination-based readout of nuclear
spins