127 research outputs found

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    Sialylation of campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice

    Get PDF
    <p>Background: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.</p> <p>Methodology/Principal Findings: In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.</p> <p>Conclusions/Significance: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS</p&gt

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses

    Dengue: a continuing global threat.

    Get PDF
    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future

    Clinical and Virological Factors Influencing the Performance of a NS1 Antigen-Capture Assay and Potential Use as a Marker of Dengue Disease Severity

    Get PDF
    Dengue is the most prevalent arthropod-borne disease in tropical regions. The clinical manifestation may vary from asymptomatic to potentially fatal dengue shock syndrome. Early laboratory confirmation of dengue diagnosis is essential since many symptoms are not specific. Dengue non-structural protein 1 (NS1) may be used in simple antigen-capture ELISA for early detection of dengue virus infection. Our result demonstrated that the Platelia NS1 antigen detection kit had a quite low overall sensitivity. However, sensitivity rises significantly when used in combination with MAC-ELISA. When taking into account the various forms of dengue infection, the NS1 antigen detection was found relatively high in patients sampled during the first 3 days of fever onset, in patients with primary infection, DENV-1 infection, with high level of viremia and in mild form of dengue fever. In asymptomatically infected individuals, RT-PCR assay has proved to be more sensitive than NS1 antigen detection. Moreover, the NS1 antigen level correlated significantly with high viremia and low level of NS1 antigen was associated with more severe disease

    Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries

    Get PDF
    BACKGROUND:Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions. METHODOLOGY/PRINCIPAL FINDINGS:The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1-4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for. CONCLUSIONS/SIGNIFICANCE:Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings

    2nd International External Quality Control Assessment for the Molecular Diagnosis of Dengue Infections

    Get PDF
    Dengue viruses (DENV) are the most widespread arthropod-borne viruses which have shown an unexpected geographic expansion, as well as an increase in the number and severity of outbreaks in the last decades. In this context, the accurate diagnosis and reliable surveillance of dengue infections are essential. The laboratory diagnosis of dengue relies on the use of several methods detecting markers of DENV infection present in patient serum. Molecular diagnosis methods are usually rapid, sensitive, and simple when correctly standardized. Moreover, PCR-based diagnosis techniques are able to readily detect DENV during the acute phase of the disease and may assume an important role in dengue diagnosis and surveillance. Different reverse transcriptase PCR (RT-PCR) methods have been developed and are currently available and should be standardized in each laboratory to maintain high quality performance. In this work an External quality assessment (EQA) activity has been carried out to evaluate the accuracy and quality of laboratory data for the molecular diagnosis and surveillance of dengue, which involved worldwide dengue reference laboratories. In conclusion, RT-PCR techniques for dengue diagnosis applied by the participating laboratories demonstrated the need of further improvement in most laboratories

    Role of the Chemokine Receptors CCR1, CCR2 and CCR4 in the Pathogenesis of Experimental Dengue Infection in Mice

    Get PDF
    Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. Recent clinical data have shown an association between levels of different chemokines in plasma and severity of dengue. We evaluated the role of CC chemokine receptors CCR1, CCR2 and CCR4 in an experimental model of DENV-2 infection in mice. Infection of mice induced evident clinical disease and tissue damage, including thrombocytopenia, hemoconcentration, lymphopenia, increased levels of transaminases and pro-inflammatory cytokines, and lethality in WT mice. Importantly, infected WT mice presented increased levels of chemokines CCL2/JE, CCL3/MIP-1α and CCL5/RANTES in spleen and liver. CCR1-/- mice had a mild phenotype with disease presentation and lethality similar to those of WT mice. In CCR2-/- mice, lethality, liver damage, levels of IL-6 and IFN-γ, and leukocyte activation were attenuated. However, thrombocytopenia, hemoconcentration and systemic TNF-α levels were similar to infected WT mice. Infection enhanced levels of CCL17/TARC, a CCR4 ligand. In CCR4-/- mice, lethality, tissue injury and systemic inflammation were markedly decreased. Despite differences in disease presentation in CCR-deficient mice, there was no significant difference in viral load. In conclusion, activation of chemokine receptors has discrete roles in the pathogenesis of dengue infection. These studies suggest that the chemokine storm that follows severe primary dengue infection associates mostly to development of disease rather than protection

    Higher Infection of Dengue Virus Serotype 2 in Human Monocytes of Patients with G6PD Deficiency

    Get PDF
    The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency is high in Asia. An ex vivo study was conducted to elucidate the association of G6PD deficiency and dengue virus (DENV) infection when many Asian countries are hyper-endemic. Human monocytes from peripheral mononuclear cells collected from 12 G6PD-deficient patients and 24 age-matched controls were infected with one of two DENV serotype 2 (DENV-2) strains–the New Guinea C strain (from a case of dengue fever) or the 16681 strain (from a case of dengue hemorrhagic fever) with a multiplicity of infection of 0.1. The infectivity of DENV-2 in human monocytes was analyzed by flow cytometry. Experimental results indicated that the monocytes of G6PD-deficient patients exhibited a greater levels of infection with DENV-2 New Guinea C strain than did those in healthy controls [mean±SD:33.6%±3.5 (27.2%∼39.2%) vs 20.3%±6.2 (8.0%∼30.4%), P<0.01]. Similar observations were made of infection with the DENV-2 16681 strain [40.9%±3.9 (35.1%∼48.9%) vs 27.4%±7.1 (12.3%∼37.1%), P<0.01]. To our knowledge, this study demonstrates for the first time higher infection of human monocytes in G6PD patients with the dengue virus, which may be important in increasing epidemiological transmission and perhaps with the potential to develop more severe cases pathogenically

    Pediatric Measles Vaccine Expressing a Dengue Antigen Induces Durable Serotype-specific Neutralizing Antibodies to Dengue Virus

    Get PDF
    Dengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV). As a proof-of-concept, we inserted into the MV vector a sequence encoding a minimal combined dengue antigen composed of the envelope domain III (EDIII) fused to the ectodomain of the membrane protein (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measles–dengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist
    • …
    corecore