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Abstract

Background: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with
antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is
considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and
gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4
and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.

Methodology/Principal Findings: In this study we investigated the effects of bacterial sialylation on phagocytosis and
cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-
mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C.
jejuni was more efficiently phagocytosed in vitro by BM-MW, but not by BM-DC. In addition, LOS sialylation increased the
production of IL-10, IL-6 and IFN-b by both BM-MW and BM-DC. Subsequent in vivo experiments revealed that sialylation
augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly
amplified the production of type I interferons, which was independent of pDC.

Conclusions/Significance: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be
important in inducing cross-reactive humoral responses that cause GBS.
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Introduction

C. jejuni is one of the most common causes of bacterial

gastroenteritis affecting approximately 50 per 100,000 individuals

each year in Europe [1]. In most cases, gastroenteritis resolves

within a week, however, a minority of infected individuals develop

post-infectious GBS. This is a life-threatening neurological disease

in which peripheral nerves including spinal roots are damaged

(polyradiculoneuropathy), leading to a rapid and ascending

paralysis of the extremities. Patients with a preceding C. jejuni

infection have a more severe form of GBS with poorer outcome as

compared to patients without preceding C. jejuni infection [2].

Nerve damage that precipitates C. jejuni-related GBS is the result

of antibodies that are generated against sialylated LOS present on

C. jejuni [2]. These antibodies cross-react with structurally similar

glycolipids present on peripheral nerve membranes, and initiate

complement activation and neuronal degeneration [3,4]. Animal

studies have demonstrated that C. jejuni LOS induces ganglioside-

reactive antibodies that lead to subsequent GBS-like paralysis

[5,6].

C. jejuni strains isolated from GBS patients more frequently

express the enzyme Campylobacter sialic acid transferase-II (Cst-II),

which is responsible for the sialylation of LOS [7]. The sialic acid

residue is required for the structural homology between LOS and

gangliosides like GM1a and GD1a and crucially determines

antibody cross-reactivity [8]. Only a limited number of individuals

develop GBS after infection with C. jejuni and it is likely that

susceptibility is determined by both pathogen and host factors.
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Sialylation is known to be beneficial to many pathogens. In the

case of C. jejuni it increases epithelial invasiveness [9] and protects

against complement-mediated lysis [10]. In a possible example of

the ‘‘Red Queen effect’’, which symbolises the continuous

evolutionary battle between species, the mammalian immune

system has evolved sialic acid specific receptors, such as the rapidly

evolving Siglec family (sialic acid-binding immunoglobulin-like

lectins) [11]. While interaction of sialylated pathogens with Siglecs

typically results in reduced immune responses due to the presence

of ITIMs in many of the Siglecs, in the case of C. jejuni sialylation is

associated with increased host immune responses. For example, in

a cohort of patients with C. jejuni enteritis, sialylation was

associated with higher levels of specific IgM antibodies and an

increased severity of gastroenteritis, which may be the result of a

more robust immune response [12]. The specific role of sialylated

LOS in enhanced inflammatory responses was demonstrated

recently by in vitro studies showing that sialylated LOS more

efficiently stimulates human DC through TLR4, thus amplifying

DC-mediated B-cell proliferation [13]. Similarly, sialylated

pathogens may be more prone to scavenging by specialised

macrophages, as exemplified by binding of sialylated C. jejuni to

sialoadhesin, also known as Siglec-1 [14].

In the far majority of GBS patients, loss of self-tolerance is

transient. The mechanisms that drive this loss of tolerance and

subsequent re-establishment of tolerance are poorly understood.

Likewise, the precise mechanism by which sialylation affects the

immunogenicity of C. jejuni in vivo remains unknown. Given the

above evidence, it is likely that sialylation does not only supply the

requisite molecular mimicry to break tolerance, but also directly

drives more robust inflammatory responses which, in susceptible

individuals, may allow autoreactive B cell clones to bypass the

tolerance mechanisms.

We hypothesize that the selective binding of sialylated C. jejuni to

innate receptors like Siglecs and TLR4 results in targeting to

myeloid cell populations with high expression of these receptors

such as splenic metallophilic macrophages. These initial events

may alter signalling and crucially determine subsequent immune

responses by influencing processes like antigen presentation [15],

regulatory T cell expansion [16] and B-cell activation [17].

In this study we investigated the functional role of LOS

sialylation on cytokine responses and phagocytosis of C. jejuni by

murine myeloid lineage antigen presenting cells, macrophages and

DC. We show that the presence of sialic acids on C. jejuni promotes

enhanced phagocytosis in vitro by BM-MW but not BM-DC.

Furthermore, sialic acid on C. jejuni LOS results in increased

cytokine responses by both myeloid cell populations. The

increased phagocytosis by BM-MW did not translate into a

preferential uptake of sialylated C. jejuni by specialised macrophage

populations in the spleen in vivo. However a small increase was

noted in the number of splenic DC that ingested sialylated

bacteria. These DC may account for the selective and robust

increase in type I interferon production in response to sialylated C.

jejuni.

Results

BM-MW, but not BM-DC, show increased phagocytosis of
sialylated C. jejuni

To investigate the impact of C. jejuni sialylation on functional

responses by myeloid cells, we used different isogenic C. jejuni

strains. The GB2 and GB11 wildtype strains express LOS that

mimic gangliosides GM1a and GD1a, whereas the GB2 and

GB11 Cst-II mutant strains do not mimic gangliosides. All strains

were fluorescently labelled using CFSE in order to facilitate

tracking during phagocytosis. To ensure comparable fluorescence

intensities for the quantitative phagocytosis studies, we performed

flow cytometry after the CFSE-labelling. Figure S1 shows that the

mean fluorescence intensities of wildtype and Cst-II mutant strains

were indeed comparable (MFI 57.1 vs. 57.6 for GB2 wt and

mutant respectively, and MFI 83.7 vs. 81.2 for GB11 wt and

mutant respectively). The C. jejuni were heat-inactivated to prevent

dilution through bacterial cell division.

As sialylation has previously been shown to enhance the rate of

phagocytosis of Neisseria meningitides [18], we hypothesised that

sialylation of C. jejuni would result in increased phagocytosis by

myeloid cells. Labelled GB11 bacteria were added to BM-MW or

BM-DC and the fluorescence intensity was determined as a

measure of bacterial phagocytosis.

BM-MW incubated with sialylated GB11 wt showed higher

fluorescence intensities than BM-MW incubated with Cst-II

mutant GB11 (Figure 1A and B). The difference was most

pronounced after 30 min of incubation; the fold increase of cells

incubated with GB11 wt was 2.360.2 compared to 1.860.1 when

cells were incubated with GB11 Cst-II mutant bacteria (p,0.05; t

test). The intracellular location of the wildtype and knockout

bacteria was confirmed by microscopy (Figure S2). In contrast,

BM-DC showed no difference in fluorescence intensity between

cells incubated with GB11 wt and GB11 Cst-II mutant bacteria

(Figure 1C and D).

Although it remains to be determined, it is possible that the

sialylated epitope phagocytic receptor is a Siglec. Interestingly,

sialoadhesin, which binds to a2,3-linked sialic acids [13], could

facilitate the enhanced phagocytosis identified in BM-MW. In

support of this concept, Facs analysis demonstrated high

expression of sialoadhesin on BM-MW but not BM-DC. In

addition, sialoadhesin was upregulated on BM-MW but not on

BM-DC, following stimulation with C. jejuni LOS (Figure S3).

LOS sialylation enhances myeloid cell cytokine
production

Given the interaction of LOS with TLR4 and the potential

interaction of sialylated epitopes with Siglecs we investigated the

influence of C. jejuni sialylation on cytokine responses in myeloid-

derived antigen presenting cells. As other TLR/NLR ligands

present in C. jejuni may have confounding effects, we stimulated

BM-MW and BM-DC with a titrating dose of purified LOS

derived from GB11 wt and GB11 Cst-II mutant strains and

measured cytokine responses in the culture supernatant.

Overnight stimulation with C. jejuni LOS induced a strong dose-

dependent IL-6 and IL-10 response in BM-DC and BM-MW.

However, myeloid cells stimulated with GB11 wt LOS produced

significantly higher levels of IL-10 and IL-6 than cells stimulated

with Cst-II mutant GB11 derived LOS (p,0.05; paired t test;

Figure 2). This difference was observed using different concentra-

tions of LOS, starting as low as 1 ng/ml. Similarly, the production

of IFN-b, which is induced by C. jejuni following MyD88-

independent TLR4 activation [19], was significantly higher in

both BM-DC and BM-MW after 4 h stimulation with sialylated

LOS (Figure 2E and F). The importance of sialylation was further

studied using LOS derived from the additional sialylated and non-

sialylated isogenic C. jejuni strains GB2 wt and ko. BM-DC and

BM-MW stimulated with sialylated GB2 produced significantly

higher levels of IL-6 and IL-10, like GB11 wt, when compared to

the non-sialylated counterpart (data not shown). These results

confirm that the increased cytokine responsiveness is dependent on

the presence of a sialylated epitope.

To confirm that LOS induced BM-DC IL-10 production was

TLR4 dependent and that contamination was not present. BM-

Impact of Bacterial Sialylation on Innate Immunity
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DC derived from the C3H/HeJ mouse strain (Tlr4 mutant, LPS

hyporesponsive) and the control C3H/HeN strain (LPS respon-

sive) were stimulated as before and IL-10 assayed. No IL-10 was

produced in the absence of TLR4 signalling (data not shown).

Thus confirming that following LOS stimulation, the sialylated

epitope enhanced IL-10 production is TLR4-dependent and that

contamination by other TLR/NLR ligands is highly unlikely in

our preparations.

C. jejuni is scavenged by macrophages in the splenic
marginal zone

Having demonstrated sialylation specific differences in macro-

phage phagocytosis in vitro, we subsequently investigated whether

in vivo phagocytosis of C. jejuni was also affected by sialylation.

Because sialylation also increases invasion and translocation over

gut epithelial tissues, potentially leading to unequal numbers of

bacteria in the blood stream, we injected CFSE-labelled GB2 wt or

Cst-II mutant bacteria intravenously into C57BL/6 mice and

isolated the spleens after various time points to assess C. jejuni

localisation.

CFSE-labelled GB2 was predominantly localised at the splenic

marginal zone. This could be demonstrated by CFSE positive

bacteria around the B-cell follicles at the border of the red and

white pulp. Fluorescent bacteria could be identified in the spleens

of animals sacrificed 15 min, 1 h or 3 h after i.v. injection.

However, after 6 h, very few fluorescent particles could be

observed. For (quantitative) colocalisation studies we therefore

used the 1 h and 3 h time points. Immunofluorescent staining for

sialoadhesin, which identifies marginal zone metallophilic macro-

phages, showed that both CFSE-labelled GB2 wt and Cst-II

mutant were present in the sialoadhesin-expressing macrophages

(Figure 3A and B). In the marginal zone, fluorescent bacteria were

also observed in cells that were negative for sialoadhesin

(Figure 4B, inset), suggesting uptake by marginal zone macro-

phages. Indeed, staining for CD209b (SIGNR1) on marginal zone

macrophages, showed that GB2 was also scavenged by this cell

type (Figure 3C and D).

The mean CFSE-positive area of digital images taken from the

spleens of injected animals was used as an indication of the amount

of bacteria present in each section. The percentage of the CFSE-

positive area within metallophilic macrophages or marginal zone

macrophages was used as a measurement of the co-localisation of

the C. jejuni within these macrophage populations.

There was no difference in the CFSE-positive area between

GB2 wt and Cst-II mutant-injected animals at either 1 h or 3 h

indicating that the same quantity of sialylated and non-sialylated

bacteria was deposited in the spleen following injection (Figure 4A).

When the percentage of CFSE-positive area within the sialoadhe-

sin or CD209b positive area was determined, no significant

differences were observed between GB2 wt and Cst-II mutant-

injected animals (Figure 4B and C).

To substantiate these findings to other phagocyte populations in

the spleen, Facs-analysis was performed using markers specific for

red pulp macrophages (F4/80), marginal zone metallophilic

macrophages (MOMA1), DC (CD11c) and neutrophils (Ly-6G/

C). The percentage of CFSE-positive splenocytes in GB2 wt

injected animals (1.0860.50%) was comparable to GB2 Cst-II

mutant injected mice (1.0160.20%). CFSE-labelled C. jejuni

Figure 1. Increased phagocytosis of sialylated C. jejuni by BM-MW. (A) BM-MW or (C) BM-DC were incubated with CFSE-labelled wt or Cst-II
mutant GB11 for 60 min at 37uC (open histograms) or 4uC (filled histograms). Phagocytosis of C. jejuni by F4/80+ cells or CD11c+ cells was quantified
as fold increase in fluorescence intensity using background fluorescence of 4uC, NaN3 cultured cells as a reference. Phagocytosis of sialylated wt GB11
and unsialylated GB11 for 0, 15, 30 and 60 min shows that sialylation increases C. jejuni phagocytosis by BM-MW (B) but not DM-DC (D). One
representative experiment out of 3 is shown (B and D; means 6 sd of triplicates). * p,0.05; t-test.
doi:10.1371/journal.pone.0034416.g001

Impact of Bacterial Sialylation on Innate Immunity
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bacteria were detected in all phagocyte populations examined. No

differences were observed in the number of CFSE-positive

macrophages and neutrophils when comparing GB2 wt and Cst-

II mutant-injected animals. However, a modest though significant

increase was found in the number of DC that ingested the

sialylated bacteria (p,0.05; Figure 4D).

Figure 2. Sialylated GB11 LOS induces higher cytokine levels by myeloid cells. BM-MW (A, C and E) and BM-DC (B, D and F) were incubated
overnight (for IL-6 and IL-10) or for 4 h (IFN-b) with purified LOS derived from GB11 C. jejuni or Cst-II mutant C. jejuni and cytokine production was
measured by ELISA. Sialylated LOS induces more IL-10 (A and B), IL-6 (C and D) and IFN-b (E and F) than non-sialylated LOS. Graphs represent pooled
data as mean 6 standard error from 3 (IL-10 and IFN-b) or 4 (IL-6) independent experiments. * p,0.05; paired t-test, n.d.: not detectable.
doi:10.1371/journal.pone.0034416.g002

Impact of Bacterial Sialylation on Innate Immunity
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Sialylation of C. jejuni results in increased type I interferon
production

We previously identified sialylation dependent differences in

cytokine responses by myeloid cells to C. jejuni LOS in vitro. To

determine if these effects were apparent after in vivo C. jejuni

stimulation, RNA was isolated from the spleens of C. jejuni treated

mice and the relative expression of a panel of cytokines was

determined by real-time quantitative PCR.

With the exception of IFN-c, all cytokines were expressed to a

higher level at 1 h than at 3 h (data not shown). Highly

upregulated cytokines, i.e. more than 25-fold compared to PBS-

injected animals, included IFN-a2, IFN-a4, IFN-b and IL-6

(Figure 5). Both IFN-a4 and IFN-b expression were significantly

higher in GB2 wt injected animals (fold increase of 214461410

and 5646183 respectively) compared to GB2 Cst-II mutant-

injected animals (fold increase of 2916260 and 64636; p,0.05;

Mann-Whitney U test). IFN-a2 was also expressed to a higher

level in GB2 wt-injected mice (fold increase of 5086309) as

compared to mutant-injected mice (fold increase of 1376102),

however this difference did not reach significance (p = 0.11; Mann-

Whitney U test). The expression of other cytokines, amongst

others TNF-a, IL-6, IL-10 and IL-1b, were not different between

GB2 wt and GB2 mutant-injected animals.

The production of high levels of IFN-a2 and IFN-a4 after

injection with C. jejuni may suggest involvement of pDC. To

investigate whether pDC contributed to the production of

cytokines especially type I IFN, we depleted pDC using the

mAb 120G8 [20] prior to i.v. injection of C. jejuni. Administration

of the depleting antibody significantly reduced the number of

PDC1+ B220+ cells in the CD11c+ CD11b2 population,

demonstrating that the large majority of splenic pDC were

depleted (Figure S4A). Induction of type I IFN as well as several

other cytokines (i.e., IL-6 and TNF-a) was observed in spleens of

pDC-depleted animals after injection with GB2 wt (Figure S4B).

There was no difference between pDC-depleted animals and

isotype control treated animals, indicating that the production of

cytokines, including type I IFN was pDC-independent.

To study whether the increased expression of type I IFN could

also be detected systemically, we measured cytokines in serum

samples collected either at 3 h or at 16 h after C. jejuni injection.

No IFN-a or IFN-b could be detected in serum samples of mice

injected with wildtype of Cst-II mutant C. jejuni strains.

In summary, although injection of both sialylated and

unsialylated C. jejuni induced the production of several pro-

Figure 3. Both sialylated and non-sialylated C. jejuni are scavenged by macrophages in the splenic marginal zone. Mice were injected
with CFSE-labelled GB2 wt (A and C) or Cst-II mutant (B) bacteria and spleens were isolated after 1 h. Spleen sections were stained for sialoadhesin (A
and B) or CD209b (C and D) and counterstained for B220 (purple). Insets show colocalisation of GB2 wt and ko bacteria with sialoadhesin and CD209b
positive macrophages.
doi:10.1371/journal.pone.0034416.g003

Impact of Bacterial Sialylation on Innate Immunity
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Figure 4. Sialylation of C. jejuni increases in vivo phagocytosis by splenic DC but not macrophages. Mice were sacrificed 1 h or 3 h after
i.v. injection of PBS or CFSE-labelled GB2 (wt or Cst-II mutant). Bacterial deposition in spleen sections, stained for sialoadhesin, CD209b and B220, was
quantified as detailed in the Materials and Methods section. The CFSE-positive area of digital images was similar between GB2 wt and Cst-II mutant
injected animals (A). No differences were observed in the CFSE-positive area within MOMA1 (B) or CD209b-positive cells (C). For each mouse, 6
pictures from 2 spleen sections were used for analysis (n = 4). Using Facs-analysis, the number of CFSE-positive metallophilic macrophages
(Sialoadhesin+), red pulp macrophages (F4/80+), DC (CD11c+) and neutrophils (Ly-6G/C+) was determined per spleen (n = 3; D). Shown are means 6
sd. * p,0.05; t-test with Welch’s corrections.
doi:10.1371/journal.pone.0034416.g004

Figure 5. Increased type I interferon production in the spleens of GB2 wildtype injected animals. Mice were injected with PBS, GB2
wildtype or Cst-II mutant bacteria and spleens were isolated after 1 h. Spleen sections were homogenised for RNA extraction and cytokine expression
was analysed by real-time PCR. Data is expressed as fold increase (mean 6 sd; n = 4) compared to PBS-injected control animals. * p,0.05, Mann-
Whitney U test.
doi:10.1371/journal.pone.0034416.g005

Impact of Bacterial Sialylation on Innate Immunity
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inflammatory cytokines in the spleen, sialylated C. jejuni was

significantly more effective in inducing a type I IFN response.

Discussion

LOS sialylation is a crucial factor in the pathogenesis of GBS as

the sialic acid residue is a major determinant of the structural

similarity with human nerve gangliosides. In addition, sialylation is

associated with more severe gastroenteritis and higher levels of C.

jejuni-specific IgM [12] indicating a stimulatory effect on host

immune responses. As myeloid cells drive innate and adaptive

immune responses, we hypothesised that sialylation of LOS affects

functional responses of myeloid cells, through interaction with

sialic acid specific receptors. Using a combination of in vitro and in

vivo models, we sought to investigate if sialylation influences the

responses of these cells in both their capacity to phagocytose C.

jejuni and their cytokine responses to purified LOS. Our results

show that sialylation of C. jejuni increases phagocytosis by BM-MW
in vitro, an effect most likely mediated by sialoadhesin, whereas in

vivo studies indicated a preferential uptake of sialylated C. jejuni by

splenic DC. The production of cytokines by myeloid cells was

clearly increased by sialylated C. jejuni. This effect was not only

observed in vitro by both macrophages and DC, but also in vivo,

where type I interferons were identified as major discriminators

between sialylated C. jejuni strains and their unsialylated counter-

part. The findings in this study will be crucial for further

understanding of the increased pathogenicity of sialylated C. jejuni

strains and its mechanisms to induce cross-reactive humoral

responses leading to GBS.

The functional implications of C. jejuni sialylation on myeloid

cells are not fully known. Following up on the recent findings by

Bax et al. [21] demonstrating that sialylation of C. jejuni LOS

modulates Th1/Th2 skewing by human DC, we further elucidate

the role of microbial sialylation on myeloid cell responses. While

sialylation of C. jejuni increased phagocytosis by cultured BM-MW
it did not increase phagocytosis by BM-DC. Sialoadhesin is

expressed on BM-MW but not BM-DC, suggesting that in vitro

sialoadhesin might mediate increased phagocytosis. In support of

this, a sialoadhesin-mediated phenomenon has previously been

reported with meningococci [18]. However, although the

increased phagocytosis of sialylated C. jejuni in vitro is likely

mediated by sialoadhesin, we did not find that C. jejuni was

preferentially taken up by sialoadhesin-positive marginal zone

metallophilic macrophages in the spleen. This discrepancy may be

explained by the absence of serum factors like complement and

immunoglobulin during the in vitro studies. Receptors recognising

complement are highly expressed by macrophage populations in

the marginal zone, explaining the preferential location of both

strains of C. jejuni. It must also be noted that in order to facilitate

tracking of C. jejuni, we made use of heat-inactivated bacteria,

which may differ substantially from live bacteria. For example, live

bacteria are able to change the composition of their outer core

depending on growth rate and environmental factors i.e.

temperature and availability of nutrients. In addition, the i.v.

injection of mice with heat-killed C. jejuni does not fully represent

the natural route of infection via the intestinal mucosa.

Nevertheless, our data are relevant for understanding the

pathogenesis of C. jejuni. As a consequence of bacterial transloca-

tion across epithelial barriers, bacteria may enter the blood stream

relatively early during disease. In mice infected i.g. with C. jejuni,

bacteraemia is present as early as 10 min after inoculation and

resolves within 24 h [22,23]. Transient bacteraemia is also thought

to occur in humans, especially in patients with high fever [24].

Skirrow et al. [25] reported that C. jejuni bacteraemia occurred in

0.3–5.9 per 1000 intestinal infections. The incidence increased

with age and was twice as frequent in men as in women. Most

probably the frequency of bacteraemia is underestimated, as it

occurs early in disease when blood cultures are rarely taken [24].

The crucial role of the spleen in the recovery from C. jejuni

bacteraemia is exemplified by a case report describing fatal

outcome after C. jejuni infection in a splenectomised patient [26].

Further studies to investigate the role of myeloid cells in immunity

to sialylated C. jejuni should take these bacterial changes into

account.

In agreement with our previous observations on LOS potency

in human DC [13], we demonstrated that sialylation of C. jejuni

LOS dramatically enhanced the in vitro production of cytokines,

both by macrophages and DC. We also found that both C. jejuni

strains induced a robust cytokine response in vivo, including type I

IFN, IL-10, IL-6, TNF-a and IL-12, in the spleen 1 h after

injection. Strikingly, the only difference between the strains was

found in the production of type I interferon which was higher in

mice injected with sialylated C. jejuni. This effect is most likely

attributed to increased signalling of sialylated LOS via TLR4 [13].

Our finding that more CD11+ DC, which are known to express

TLR4, were phagocytosing GB2 wt may explain the type I IFN

signature in response to sialylated bacteria. TLR4 activation leads

to both MyD88-dependent and MyD88-independent signal

transduction, the latter being responsible for the induction of

IFN-b [22]. In another study, C. jejuni has indeed been shown to

induce IFN-b in mouse BM-DC in a TLR-4 and TIR-domain-

containing adapter-inducing interferon-b (TRIF)-dependent man-

ner [19].

TLR2 in conjunction with TLR1 and TLR6 may also play a

role in the production of cytokines in response to C. jejuni [27]. Our

observation that IL-10, IL-6, TNF-a and other cytokines were not

significantly different between sialylated and non-sialylated strains

may be explained by the additional signalling of C. jejuni via TLR2,

thus decreasing the relative contribution of TLR4 signalling for

the production of these cytokines. Alternatively, our inability to

show a difference in IL-6 and IL-10 levels may represent the lack

of specificity in our assay, which looks at whole spleen tissue. This

does not take into account the microenvironment around

individual antigen presenting cells, such as DC, in which

differences in IL-6 and IL-10, consistent with our in vitro results,

may exist and influence nearby immune effector cells.

The increased induction of IFN-a and IFN-b by sialylated C.

jejuni may play a role in the subsequent production of anti-

ganglioside antibodies that cause GBS. Type I interferons directly

act on B cells by decreasing the threshold of BCR activation [28],

promoting isotype switching and increasing immunoglobulin

production [17]. Its crucial role in the immune response is further

illustrated by the fact that the antibody-augmenting effect of

complete Freund’s adjuvant can be largely attributed to the

production of type I IFN [29]. Because of its important role in

humoral immune responses, we speculate that the increased levels

of specific IgM responses in patients infected with sialylated C.

jejuni [12] may be due to the selective increase in type I IFN by the

sialylated pathogen. In susceptible persons, this increase could

subsequently facilitate the activation of ganglioside cross-reactive B

cells. In the study of Mortensen et al, no difference in IgG levels

was observed between subjects infected with sialylated and

unsialylated C. jejuni. It is possible that due to local production

type I IFN only affects newly activated B cells and has little

influence on long-lived plasma cells, which contribute the most to

peripheral IgG levels.

Importantly, treatment of hepatitis or multiple sclerosis patients

with IFN-a or IFN-b respectively can lead to the development of
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autoimmune neuropathies [30,31]. Although a systematic epide-

miologic study on this matter is lacking, it appears that type I IFN-

induced neuropathy is not a general effect but rather occurs in a

small minority of cases. Not only is it necessary that the B cells with

ganglioside cross-reactivity are present in the subject, the B cells

also need to be activated through the BCR, as type I IFN only

promotes humoral responses in a BCR-dependent manner [28].

This requires an infection with pathogens expressing ganglioside

mimics, such as C. jejuni or Haemophilus influenzae [32].

In conclusion, our data indicate that sialylation of C. jejuni results

in increased phagocytosis by murine macrophage in vitro and

increased scavenging of C. jejuni by splenic DC in vivo. Sialylated C.

jejuni is more effective at inducing cytokine responses by myeloid

cells, particularly type I interferons. Future studies must address to

what extent these cytokine responses contribute to exacerbated

disease and development of post-infectious complications such as

GBS by sialylated C. jejuni strains.

Materials and Methods

Culture and fluorescent labelling of C. jejuni
C. jejuni strains GB2 and GB11 were isolated from patients with

GBS, and the corresponding Cst-II mutant strains, producing

LOS lacking sialic acid were described previously [33]. Bacteria

were cultured on blood agar plates incubated at 37uC under

microaerophilic conditions and harvested after 48–72 h. To

obtain fluorescently labelled bacteria, cells were washed with

PBS and resuspended to an OD600 of 1.0. An equal volume of

2 mM CFDA-SE in PBS was added and cells were incubated for

30 min at 37uC and subsequently heat-inactivated for 1 h at 65uC.

Bacteria were washed twice with PBS and stored at 280uC in

PBS/10% glycerol until use.

Phagocytosis of C. jejuni by BM-MW and BM-DC
For BM-MW, C57BL/6 bone marrow cells (0.56106/ml) were

cultured in 90 mm Petri dishes (Sterlin, UK) in RPMI supple-

mented with 20% L-929 supernatant (containing M-CSF) and

incubated at 37uC in 5% CO2. Fresh medium was added on day

4. Adherent cells were harvested on day 7 using a cell scraper and

ice cold PBS. Purity was assessed by flow cytometry and was

typically .90% F4/80+. BM-DC were grown using a similar

protocol only the RPMI was supplemented with 10% X-63

supernatant (containing GM-CSF) with 10 ml of fresh RPMI/

10% X-63 added on day 4. Non-adherent cells were harvested on

day 8. Purity was assessed by flow cytometry and was typically

.70% CD11c+. For the phagocytosis assays, RPMI medium

supplemented with Ultra-low IgG foetal bovine serum (Invitrogen,

UK) was used to exclude the possibility of bovine IgG affecting

phagocytosis. Macrophages or DC (16106/ml) were incubated at

37uC with CFSE-labelled GB11 wt or mutant bacteria at a ratio of

10 or 20:1. As a control, cells were incubated in the presence of

5 mM NaN3 at 4uC. After 0, 15, 30 or 60 minutes, cells were

washed with ice cold PBS with 5 mM NaN3, stained with anti-

mouse F4/80 biotin or anti-mouse CD11c biotin and streptavidin

APC and measured on a Facs Calibur. For analysis, F4/80+ or

CD11c+ cells were gated and the mean fluorescence intensity

(MFI) of these cells (representing phagocytosed bacteria) was

determined and divided by the MFI of the 4uC, NaN3 cultured

controls for each time point (n = 3). The residual sample following

Facs analysis was centrifuged onto plates and visualised using an

Apotome microscope to confirm the intracellular location of the

bacteria.

Stimulation of myeloid cells by C. jejuni LOS
LOS was purified from C. jejuni using previously published

protocols [13]. BM-DC and BM-MW were generated as above and

cultured at 16105 cells per well in 96 well flat-bottom plates

(Nunc) with the appropriate concentration of LOS. The

supernatants were harvested after overnight culture at 37uC with

5% CO2 and analysed using an IL-6 ELISA kit from R&D and an

OptEIA IL-10 ELISA kit (BD Biosciences, UK). Supernatants

isolated after 4 h stimulation were used to determine IFN-b
production using ELISA (PBL InterferonSource, Piscataway, NJ).

For C3H/HeJ and C3H/HeN experiments, mice were purchased

from Harlan UK and BM-DC were generated as above.

Intravenous challenge of mice with C. jejuni
C57BL/6 mice (8–12 weeks old) were bred and housed under

standard laboratory conditions at the University of Glasgow

(Glasgow, Scotland). All experiments were performed under the

UK Home Office License.

A 200-ml suspension containing 108 bacteria (OD600 of 0.6), or

PBS as a negative control, was injected into the tail vein. Mice

were sacrificed after 15 min, 1 h or 3 h using CO2. Organs were

snap-frozen in OCT using liquid nitrogen. Alternatively, the

spleen was immediately passed through a 100-mm cell strainer and

splenocytes were kept on ice in PBS/2 mM EDTA for Facs-

analysis. pDC depletion was accomplished by administrating

250 mg 120G8 or isotype control antibody/mouse i.p. 24 h and

48 h before injection of bacteria.

Facs-analysis
Splenocytes were fixed with 2% paraformaldehyde in PBS on

ice for 30 min, washed and incubated with 5 mg/ml Fc-block (BD)

for 30 min. Primary antibodies were added to the cells (66105

cells/staining): biotinylated anti-F4/80 (10 mg/ml; clone BM8;

Biolegend), biotinylated anti-CD11c (10 mg/ml; clone HL3; BD),

biotinylated IgG1 isotype control (10 mg/ml; BD), APC-conjugat-

ed anti-CD19 (2 mg/ml; clone 1D3; BD), APC-conjugated anti-

Ly-6G/C (4 mg/ml; clone RB6-8C5; eBiosience, Hatfield, UK),

APC-conjugated isotype control (4 mg/ml; eBiosience) or

MOMA1 (hybridoma supernatant, kindly provided by Dr. P.

Leenen). Secondary conjugates included biotinylated anti-rat

IgG2a (5 mg/ml; clone MARG2a-1; Serotec) and APC-conjugated

streptavidin (2 mg/ml; BD). pDC staining was performed using

Alexa Fluor 488-conjugated anti-CD11b, PE/Cy7-conjugated

anti-CD11c (Biolegend, San Diego, CA), PerCP-eFluor710-

conjugated anti-PDCA1 (eBioscience) and PE-conjugated anti-

B220 (BD). Cells were measured on a Facs Calibur or Facs Canto

II HTS and data was analysed using FlowJo software (version

8.8.6).

Immunofluorescence
Frozen sections (6 mm) were fixed for 10 min with acetone, air-

dried and washed with PBS/0.05% Tween. Aspecific binding was

blocked with 10% normal goat serum and primary antibodies in

PBS 1% BSA were allowed to bind for 1 h at room temperature

(20uC). Primary antibodies included MOMA-1 and ER-TR9 (anti-

CD209b) (both hybridoma supernatants, kindly provided by Dr. P.

Leenen). Sections were subsequently incubated with 5 mg/ml

Tetramethyl Rhodamine Isothiocyanate (TRITC)-labelled goat

anti-rat IgM or IgG (Southern Biotech Associates) and stained

with 6.67 mg/ml Alexa 647-labelled anti-B220 (clone RA3-6B2;

Biolegend). To prevent binding to anti-rat IgG-TRITC, sections

were blocked with 1% rat serum prior to incubating with anti-
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B220. Sections were mounted with Citifluor anti-fadent solution

(Citifluor Ltd., Leicester, UK).

Quantification of fluorescently labelled C. jejuni in spleen
sections

Six digital images (three per section) of splenic follicles were

taken from each animal using an Apotome Zeiss microscope.

Digital images were quantified using Fiji software. The total

CFSE-positive area (above threshold level) of all images was

calculated. In addition, the percentage of area containing CFSE

was determined within the sialoadhesin or CD209b-positive area.

Sections of PBS-injected animals and sections incubated with

secondary antibodies only were used to determine threshold levels.

Real-time quantitative PCR
Three to six 30-mm sections were cut from snap-frozen spleens

and kept on dry ice until further processing. Tissue was

homogenised in 500 ml RNA-Bee solution (Tel-Test, Friendswood,

TX, USA), 100 ml chloroform was added and samples were

thoroughly mixed. Following centrifugation, the aqueous phase

was collected and RNA was further purified using the GenElute

mammalian total RNA isolation kit (Sigma-Aldrich). Using 1 mg of

total RNA template, cDNA was prepared using SuperScript II

reverse transcriptase (Invitrogen) and oligo(dT) and random

hexamer primers. Cytokine and GAPDH RNA levels were

measured by real-time quantitative PCR analysis using the ABI

PRISM 7700 sequence detection system (Applied Biosystems).

PCR primers were spanning at least one intron/exon boundary.

Sequences for the primers and reference numbers for probes

(Universal Probe Library; Roche Applied Science) are listed in

Table S1. RNA levels were calculated relative to amounts found in

a standard sample, and cytokine levels were corrected for GAPDH

RNA levels to normalize for RNA input.

Serum cytokine ELISA
IFN-a and IFN-b levels were measured by ELISA (PBL) in

serum samples of mice sacrificed 3 h or 16 h after GB2 injection.

Assays were performed according to the manufacturer’s guide-

lines.

Statistical analysis
GraphPad Prism was used for all statistical analyses; t-test, t-test

with Welch’s corrections or Mann Whitney U as appropriate.

Data are represented as mean 6 SD or SEM as indicated. P#0.05

was considered statistically significant and all tests were two sided.

Supporting Information

Figure S1 CFSE-labelling of wildtype and Cst-II knock-
out GB2 and GB11 results in comparable fluorescence
intensities. GB2 or GB11 wt and Cst-II mutant bacteria were

either left untreated (filled histograms) or were incubated with

1 mM CFSE for 30 min at 37uC, resulting in equal MFI.

(TIF)

Figure S2 Incubation of C. jejuni with BM-MW leads to
uptake into an intracellular location. BM-MW were

incubated with CFSE-labelled wt GB11 (green) at 37uC or 4uC
(with NaN3). A cytospin was made after 60 minutes and

internalisation of C. jejuni was visualised using fluorescence

microscopy, following mounting with DAPI containing media.

Shown is a z-stack of GB11 wt C. jejuni (GB11 ko gave similar

results). Inset in (C) shows clearly identifiable bacteria not present

in the top (A) or bottom (D) image, confirming phagocytosis.

(TIF)

Figure S3 Sialoadhesin is expressed on BM-MW and is
upregulated upon C. jejuni LOS stimulation. Cells were

stimulated overnight with GB11 wt or Cst-II mutant LOS and

sialoadhesin expression was examined by flow cytometry.

Sialoadhesin was expressed on unstimulated BM-MW (A; dotted

line) and was upregulated after stimulation with GB11 LOS (B,

and solid line in A). Filled histograms represent background

fluorescence when incubated with the secondary antibody alone.

BM-DC only express low levels of sialoadhesin and do not

upregulate sialoadhesin in response to GB11 LOS (C).

(TIF)

Figure S4 Type I interferon expression in response to C.
jejuni is pDC-independent. Mice were pretreated with 250 mg

120G8 antibody or an isotype control antibody, 24 h and 48 h

before injection with 108 GB2 wt bacteria. The majority of the

pDC were depleted as indicated by a strong reduction in the

percentage of PDCA1+ B220+ cells within the CD11b2 CD11c+

gate (A). Cytokine expression was determined in the spleen by

qPCR and revealed no significant differences between 120G8 and

control antibody treated mice (B).

(TIF)

Table S1 Primer sequences and probe numbers used
for real-time quantitative PCR.

(DOCX)
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