231 research outputs found
Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing
Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities
Analysis of Xq27-28 linkage in the international consortium for prostate cancer genetics (ICPCG) families.
BACKGROUND: Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS: Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS: Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS: Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
MBL2 and Hepatitis C Virus Infection among Injection Drug Users
<p>Abstract</p> <p>Background</p> <p>Genetic variations in <it>MBL2 </it>that reduce circulating levels and alter functional properties of the mannose binding lectin (MBL) have been associated with many autoimmune and infectious diseases. We examined whether <it>MBL2 </it>variants influence the outcome of hepatitis C virus (HCV) infection.</p> <p>Methods</p> <p>Participants were enrolled in the Urban Health Study of San Francisco Bay area injection drug users (IDU) during 1998 through 2000. Study subjects who had a positive test for HCV antibody were eligible for the current study. Participants who were positive for HCV RNA were frequency matched to those who were negative for HCV RNA on the basis of ethnicity and duration of IDU. Genotyping was performed for 15 single nucleotide polymorphisms in <it>MBL2</it>. Statistical analyses of European American and African American participants were conducted separately.</p> <p>Results</p> <p>The analysis included 198 study subjects who were positive for HCV antibody, but negative for HCV RNA, and 654 IDUs who were positive for both antibody and virus. There was no significant association between any of the genetic variants that cause MBL deficiency and the presence of HCV RNA. Unexpectedly, the <it>MBL2 </it>-289X promoter genotype, which causes MBL deficiency, was over-represented among European Americans who were HCV RNA negative (OR = 1.65, 95% CI 1.05–2.58), although not among the African Americans.</p> <p>Conclusion</p> <p>This study found no association between genetic variants that cause MBL deficiency and the presence of HCV RNA. The observation that <it>MBL2 </it>-289X was associated with the absence of HCV RNA in European Americans requires validation.</p
Early Results of Combined and Staged Coronary Bypass and Carotid Endarterectomy in Advanced Age Patients in Single Centre
Aim: In present study, we aimed to compare the staged and combined surgery in patients with severe carotid stenosis and coronary atherosclerosis and detect the factors affecting mortality and morbidity. Material and method: Between 2004 and 2008, 120 patients with predominant ischemic heart disease were enrolled to study. Patients were divided into three groups on basis surgery procedure. Group 1 (n=40) includeed patients had coronary artery disease without carotid disease underwent coronary artery by-pass graft (CABG) operation. Group 2 (n=40): included patients underwent combined surgery procedure including CABG and carotid endarterectomy (CEA). Patients underwent staged CABG and CEA were enrolled to Group 3 (n=40). All patients were in advanced aged and were had the same risk factors atributable atherosclerosis Results: Mean age of the patients in all groups were 68 +/- 6, 69 +/- 3, 71 +/- 2 respectively, and 83% were male. Eight patients died in all groups at follow-up(seven in group 2 and 3, and one in group 1) and the difference between both groups was statistically significant (p<0.001). The follow-up period in the intensive care unit, and hospitalization period were not statistically different between CABG group and combined CEA plus CABG group. Conclusion: We think that the results of staged or combined CABG plus CEA surgery are satisfactory in patients with severe carotid disease and advanced coronary artery disease. However, the mortality and morbidity in both procedures are higher than those of alone
The Epstein–Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress
The Epstein–Barr virus (EBV) nuclear antigen (EBNA)-1 promotes the accumulation of chromosomal aberrations in malignant B cells by inducing oxidative stress. Here we report that this phenotype is associated with telomere dysfunction. Stable or conditional expression of EBNA1 induced telomere abnormalities including loss or gain of telomere signals, telomere fusion and heterogeneous length of telomeres. This was accompanied by the accumulation of extrachromosomal telomeres, telomere dysfunction-induced foci (TIFs) containing phosphorylated histone H2AX and the DNA damage response protein 53BP1, telomere-associated promyelocytic leukemia nuclear bodies (APBs), telomeric-sister chromatid exchanges and displacement of the shelterin protein TRF2. The induction of TIFs and APBs was inhibited by treatment with scavengers of reactive oxygen species (ROS) that also promoted the relocalization of TRF2 at telomeres. These findings highlight a novel mechanism by which EBNA1 may promote malignant transformation and tumor progression
Population Substructure and Control Selection in Genome-Wide Association Studies
Determination of the relevance of both demanding classical epidemiologic criteria for control selection and robust handling of population stratification (PS) represents a major challenge in the design and analysis of genome-wide association studies (GWAS). Empirical data from two GWAS in European Americans of the Cancer Genetic Markers of Susceptibility (CGEMS) project were used to evaluate the impact of PS in studies with different control selection strategies. In each of the two original case-control studies nested in corresponding prospective cohorts, a minor confounding effect due to PS (inflation factor λ of 1.025 and 1.005) was observed. In contrast, when the control groups were exchanged to mimic a cost-effective but theoretically less desirable control selection strategy, the confounding effects were larger (λ of 1.090 and 1.062). A panel of 12,898 autosomal SNPs common to both the Illumina and Affymetrix commercial platforms and with low local background linkage disequilibrium (pair-wise r2<0.004) was selected to infer population substructure with principal component analysis. A novel permutation procedure was developed for the correction of PS that identified a smaller set of principal components and achieved a better control of type I error (to λ of 1.032 and 1.006, respectively) than currently used methods. The overlap between sets of SNPs in the bottom 5% of p-values based on the new test and the test without PS correction was about 80%, with the majority of discordant SNPs having both ranks close to the threshold. Thus, for the CGEMS GWAS of prostate and breast cancer conducted in European Americans, PS does not appear to be a major problem in well-designed studies. A study using suboptimal controls can have acceptable type I error when an effective strategy for the correction of PS is employed
FGFR1-Induced Epithelial to Mesenchymal Transition through MAPK/PLCγ/COX-2-Mediated Mechanisms
Tumour invasion and metastasis is the most common cause of death from cancer. For epithelial cells to invade surrounding tissues and metastasise, an epithelial-mesenchymal transition (EMT) is required. We have demonstrated that FGFR1 expression is increased in bladder cancer and that activation of FGFR1 induces an EMT in urothelial carcinoma (UC) cell lines. Here, we created an in vitro FGFR1-inducible model of EMT, and used this model to identify regulators of urothelial EMT. FGFR1 activation promoted EMT over a period of 72 hours. Initially a rapid increase in actin stress fibres occurred, followed by an increase in cell size, altered morphology and increased migration and invasion. By using site-directed mutagenesis and small molecule inhibitors we demonstrated that combined activation of the mitogen activated protein kinase (MAPK) and phospholipase C gamma (PLCγ) pathways regulated this EMT. Actin stress fibre formation was regulated by PLCγ activation, and was also important for the increase in cell size, migration and altered morphology. MAPK activation regulated migration and E-cadherin expression, indicating that combined activation of PLCγand MAPK is required for a full EMT. We used expression microarrays to assess changes in gene expression downstream of these signalling cascades. COX-2 was transcriptionally upregulated by FGFR1 and caused increased intracellular prostaglandin E2 levels, which promoted migration. In conclusion, we have demonstrated that FGFR1 activation in UC cells lines promotes EMT via coordinated activation of multiple signalling pathways and by promoting activation of prostaglandin synthesis
Genome-Wide and Candidate Gene Association Study of Cigarette Smoking Behaviors
The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up
Genome-Wide and Candidate Gene Association Study of Cigarette Smoking Behaviors
The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up
SLC6A3 and body mass index in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial
<p>Abstract</p> <p>Background</p> <p>To investigate the contribution of the dopamine transporter to dopaminergic reward-related behaviors and anthropometry, we evaluated associations between polymorphisms at the dopamine transporter gene(<it>SLC6A3</it>) and body mass index (BMI), among participants in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.</p> <p>Methods</p> <p>Four polymorphisms (rs6350, rs6413429, rs6347 and the 3' variable number of tandem repeat (3' VNTR) polymorphism) at the <it>SLC6A3 </it>gene were genotyped in 2,364 participants selected from the screening arm of PLCO randomly within strata of sex, age and smoking history. Height and weight at ages 20 and 50 years and baseline were assessed by questionnaire. BMI was calculated and categorized as underweight, normal, overweight and obese (<18.5, 18.5–24.9, 25.0–29.9, or ≥ 30 kg/m<sup>2</sup>, respectively). Odds ratios (ORs) and 95% confidence intervals (CIs) of <it>SLC6A3 </it>genotypes and haplotypes were computed using conditional logistic regression.</p> <p>Results</p> <p>Compared with individuals having a normal BMI, obese individuals at the time of the baseline study questionnaire were less likely to possess the <it>3' </it>VNTR variant allele with 9 copies of the repeated sequence in a dose-dependent model (** is referent; OR<sub>*9 </sub>= 0.80, OR<sub>99 </sub>= 0.47, p<sub>trend </sub>= 0.005). Compared with individuals having a normal BMI at age 50, overweight individuals (A-C-G-* is referent; OR<sub>A-C-G-9 </sub>= 0.80, 95% CI 0.65–0.99, p = 0.04) and obese individuals (A-C-G-* is referent; OR<sub>A-C-G-9 </sub>= 0.70, 95% CI 0.49–0.99, p = 0.04) were less likely to possess the haplotype with the 3'variant allele (A-C-G-9).</p> <p>Conclusion</p> <p>Our results support a role of genetic variation at the dopamine transporter gene, <it>SLC6A3</it>, as a modifier of BMI.</p
- …
