2,227 research outputs found

    Airway smooth muscle CXCR3 ligand production: Regulation by JAK-STAT1 and intracellular Ca<sup>2+</sup>

    Full text link
    In asthma, airway smooth muscle (ASM) chemokine (C-X-C motif) receptor 3 (CXCR3) ligand production may attract mast cells or T lymphocytes to the ASM, where they can modulate ASM functions. In ASM cells (ASMCs) from people with or without asthma, we aimed to investigate JAK-STAT1, JNK, and Ca2+ involvement in chemokine (C-X-C motif) ligand (CXCL)10 and CXCL11 production stimulated by interferon-γ, IL-1β, and TNF-α combined (cytomix). Confluent, growth-arrested ASMC were treated with inhibitors for pan-JAK (pyridone-6), JAK2 (AG-490), JNK (SP-600125), or the sarco(endo)plasmic reticulum Ca2+ATPase (SERCA) pump (thapsigargin), Ca2+ chelator (BAPTA-AM), or vehicle before and during cytomix stimulation for up to 24 h. Signaling protein activation as well as CXCL10/CXCL11 mRNA and protein production were examined using immunoblot analysis, real-time PCR, and ELISA, respectively. Cytomix-induced STAT1 activation was lower and CXCR3 ligand mRNA production was more sensitive to pyridone-6 and AG-490 in asthmatic than nonasthmatic ASMCs, but CXCL10/CXCL11 release was inhibited by the same proportion. Neither agent caused additional inhibition of release when used in combination with the JNK inhibitor SP-600125. Conversely, p65 NF-κB activation was higher in asthmatic than nonasthmatic ASMCs. BAPTA-AM abolished early CXCL10/CXCL11 mRNA production, whereas thapsigargin reduced it in asthmatic cells and inhibited CXCL10/CXCL11 release by both ASMC types. Despite these inhibitory effects, neither Ca2+ agent affected early activation of STAT1, JNK, or p65 NF-κB. In conclusion, intracellular Ca2+ regulated CXCL10/CXCL11 production but not early activation of the signaling molecules involved. In asthma, reduced ASM STAT1-JNK activation, increased NF-κB activation, and altered Ca2+ handling may contribute to rapid CXCR3 ligand production and enhanced inflammatory cell recruitment. © 2013 the American Physiological Society

    A circadian based inflammatory response – implications for respiratory disease and treatment

    Full text link
    Circadian clocks regulate the daily timing of many of our physiological, metabolic and biochemical functions. The immune system also displays circadian oscillations in immune cell count, synthesis and cytokine release, clock gene expression in cells and organs of the immune system as well as clock-controlled genes that regulate immune function. Circadian disruption leads to dysregulation of immune responses and inflammation which can further disrupt circadian rhythms. The response of organisms to immune challenges, such as allergic reactions also vary depending on time of the day, which can lead to detrimental responses particularly during the rest and early active periods. This review evaluates what is currently known in terms of circadian biology of immune response and the cross-talk between circadian and immune system. We discuss the circadian pattern of three respiratory-related inflammatory diseases, chronic obstructive pulmonary disease, allergic rhinitis and asthma. Increasing our knowledge on circadian patterns of immune responses and developing chronotherapeutic studies in inflammatory diseases with strong circadian patterns will lead to preventive measures as well as improved therapies focussing on the circadian rhythms of symptoms and the daily variation of the patients’ responses to medication

    Reversible bone pain and symmetric bone scan uptake in a dialysis patient treated with cinacalcet: a case report

    Get PDF
    The medical management of secondary hyperparathyroidism in patients with end-stage renal disease involves a combination of dietary restrictions, phosphate binders, active vitamin D analogs, and calcimimetics. We report the case of a 36-year-old Hispanic dialysis patient, originally from Cuba and now residing in the USA, who developed severe bone pain and muscle twitching after starting low dose cinacalcet, despite normal pre-dialysis ionized calcium and elevated parathyroid hormone. The clinical symptoms correlated with increased symmetrical uptake on bone scan that resolved rapidly upon discontinuation of cinacalcet. Cinacalcet may induce severe bone pain and a unique bone scan uptake pattern in hemodialysis patients

    Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency

    Get PDF
    To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35&#xb0;C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.&#xd;&#xa;Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1&#xb5;m.&#xd;&#xa;The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.&#xd;&#xa;Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0&#xb0;C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    A survey of attitudes toward clinical trials and genetic disclosure in autosomal dominant Alzheimer's disease

    Get PDF
    Introduction: Because of its genetic underpinnings and consistent age of onset within families, autosomal dominant Alzheimer's disease (ADAD) provides a unique opportunity to conduct clinical trials of investigational agents as preventative or symptom-delaying treatments. The design of such trials may be complicated by low rates of genetic testing and disclosure among persons at risk of inheriting disease-causing mutations. Methods: To better understand the attitudes toward genetic testing and clinical trials of persons at risk for ADAD, we surveyed participants in the Dominantly Inherited Alzheimer's Network (DIAN), a multisite longitudinal study of clinical and biomarker outcomes in ADAD that does not require learning genetic status to participate. Results: Eighty participants completed a brief anonymous survey by mail or on-line; 40 % reported knowing if they carried a gene mutation, 15 % did not know but expressed a desire to learn their genetic status, and 45 % did not know and did not desire to know their genetic status. Among participants who knew or wished to know their genetic status, 86 % were interested in participating in a clinical trial. Seventy-two percent of participants who did not wish to learn their genetic status reported that they would change their mind, if learning that they carried a mutation gave them the opportunity to participate in a clinical trial. Nearly all participants responded that they would be interested if an open-label extension were offered. Conclusions: These results suggest that the availability of clinical trials to prevent ADAD can affect persons' desire to undergo genetic testing and that consideration can be given to performing studies in which such testing is required

    Genetics of callous-unemotional behavior in children

    Get PDF
    Callous-unemotional behavior (CU) is currently under consideration as a subtyping index for conduct disorder diagnosis. Twin studies routinely estimate the heritability of CU as greater than 50%. It is now possible to estimate genetic influence using DNA alone from samples of unrelated individuals, not relying on the assumptions of the twin method. Here we use this new DNA method (implemented in a software package called Genome-wide Complex Trait Analysis, GCTA) for the first time to estimate genetic influence on CU. We also report the first genome-wide association (GWA) study of CU as a quantitative trait. We compare these DNA results to those from twin analyses using the same measure and the same community sample of 2,930 children rated by their teachers at ages 7, 9 and 12. GCTA estimates of heritability were near zero, even though twin analysis of CU in this sample confirmed the high heritability of CU reported in the literature, and even though GCTA estimates of heritability were substantial for cognitive and anthropological traits in this sample. No significant associations were found in GWA analysis, which, like GCTA, only detects additive effects of common DNA variants. The phrase ‘missing heritability’ was coined to refer to the gap between variance associated with DNA variants identified in GWA studies versus twin study heritability. However, GCTA heritability, not twin study heritability, is the ceiling for GWA studies because both GCTA and GWA are limited to the overall additive effects of common DNA variants, whereas twin studies are not. This GCTA ceiling is very low for CU in our study, despite its high twin study heritability estimate. The gap between GCTA and twin study heritabilities will make it challenging to identify genes responsible for the heritability of CU

    Deterioration of Parkinson's disease during hospitalization: survey of 684 patients

    Get PDF
    Abstract Background A substantial fraction of Parkinson's disease patients deteriorate during hospitalisation, but the precise proportion and the reasons why have not been studied systematically and the focus has been on surgical wards and on Accident & Emergency departments. We assessed the prevalence and risk factors of deterioration of Parkinson's disease symptoms during hospitalization, including all wards. Methods We invited Parkinson's disease patients from three neurology departments in The Netherlands to answer a standardised questionnaire on general, disease and hospital related issues. Patients who had been hospitalized in the previous year were included and analysed. Possible risk factors for Parkinson's disease deterioration were identified. Proportions were analysed using the Chi-Square test and a logistic regression analysis was performed. Results Eighteen percent of 684 Parkinson's disease patients had been hospitalized at least once in the last year. Twenty-one percent experienced deterioration of motor symptoms, 33% did have one or more complications and 26% had received incorrect anti-Parkinson's medication. There were no statistically significant differences for these variables between admissions on neurologic or non-neurologic wards and between having surgery or not. Incorrect medication during hospitalization was significantly associated with higher risk (OR 5.8, CI 2.5-13.7) of deterioration, as were having infections (OR 6.7 CI 1.8-24.7). A higher levodopa equivalent dose per day was a significant risk factor for deterioration. When adjusting for different variables, wrong medication distribution was the most important risk factor for deterioration. Conclusions Incorrect medication and infections are the important risk factors for deterioration of Parkinson's disease patients both for admissions with and without surgery and both for admissions on neurologic and non-neurologic wards. Measures should be taken to improve care and incorporated in guidelines.</p

    Fibulin-1c regulates transforming growth factor–β activation in pulmonary tissue fibrosis

    Get PDF
    Copyright: © 2019, American Society for Clinical Investigation. Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of patients with IPF and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (Fbln1c–/–) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin, and tenascin-C in collagen deposits following bleomycin challenge. In a potentially novel mechanism of fibrosis, Fbln1c bound to latent TGF-β–binding protein 1 (LTBP1) to induce TGF-β activation and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1c and LTBP1 colocalized in lung tissues from patients with IPF. Thus, Fbln1c may be a novel driver of TGF-β–induced fibrosis involving LTBP1 and may be an upstream therapeutic target
    corecore