27 research outputs found

    Lake sedimentary dna research on past terrestrial and aquatic biodiversity: Overview and recommendations

    Get PDF
    The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.</jats:p

    Expanding the Clinical Spectrum of Mitochondrial Citrate Carrier (SLC25A1) Deficiency: Facial Dysmorphism in Siblings with Epileptic Encephalopathy and Combined D,L-2-Hydroxyglutaric Aciduria

    No full text
    Recessive mutations in SLC25A1 encoding mitochondrial citrate carrier cause a rare inherited metabolic disorder, combined D,L-2-hydroxyglutaric aciduria (D,L-2-HGA), characterized by epileptic encephalopathy, respiratory insufficiency, developmental arrest and early death. Here, we describe two siblings compound heterozygotes for null/missense SLC25A1 mutations, c.18_24dup (p.Ala9Profs*82), and c.134C>T (p.Pro45Leu). These children presented with classic clinical features of D,L-2-HGA, but also showed marked facial dysmorphism. Additionally, there was prominent lactic acidosis in one of the siblings. Our observations suggest that facial dysmorphism is a previously unrecognized but an important diagnostic feature of SLC25A1 deficiency and expand the clinical phenotype linked to SLC25A1 mutations
    corecore