2,048 research outputs found
Phosphatidylinositol Transfer Protein-α in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis
Platelets are increasingly recognized for their contributions to tumor metastasis. Here, we show that the phosphoinositide signaling modulated by phosphatidylinositol transfer protein type α (PITPα), a protein which shuttles phosphatidylinositol between organelles, is essential for platelet-mediated tumor metastasis. PITPα-deficient platelets have reduced intracellular pools of phosphoinositides and an 80% reduction in IP3 generation upon platelet activation. Unexpectedly, mice lacking platelet PITPα form thrombi normally at sites of intravascular injuries. However, following intravenous injection of tumor cells, mice lacking PITPα develop fewer lung metastases due to a reduction of fibrin formation surrounding the tumor cells, rendering the metastases susceptible to mucosal immunity. These findings demonstrate that platelet PITPα-mediated phosphoinositide signaling is inconsequential for in vivo hemostasis, yet is critical for in vivo dissemination. Moreover, this demonstrates that signaling pathways within platelets may be segregated into pathways that are essential for thrombosis formation and pathways that are important for non-hemostatic functions
Transport Spectroscopy of Symmetry-Broken Insulating States in Bilayer Graphene
The flat bands in bilayer graphene(BLG) are sensitive to electric fields
E\bot directed between the layers, and magnify the electron-electron
interaction effects, thus making BLG an attractive platform for new
two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the
possibility of a variety of interesting broken symmetry states, some
characterized by spontaneous mass gaps, when the electron-density is at the
carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in
bilayer graphene are analogous[17,18] to the masses generated by broken
symmetries in particle physics and give rise to large momentum-space Berry
curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though
recent experiments[20-23] have provided convincing evidence of strong
electronic correlations near the CNP in BLG, the presence of gaps is difficult
to establish because of the lack of direct spectroscopic measurements. Here we
present transport measurements in ultra-clean double-gated BLG, using
source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the
CNP. The gap can be closed by an electric field E\bot \sim13 mV/nm but
increases monotonically with a magnetic field B, with an apparent particle-hole
asymmetry above the gap, thus providing the first mapping of the ground states
in BLG.Comment: 4 figure
The validity of using ICD-9 codes and pharmacy records to identify patients with chronic obstructive pulmonary disease
Background: Administrative data is often used to identify patients with chronic obstructive pulmonary disease (COPD), yet the validity of this approach is unclear. We sought to develop a predictive model utilizing administrative data to accurately identify patients with COPD.
Methods: Sequential logistic regression models were constructed using 9573 patients with postbronchodilator spirometry at two Veterans Affairs medical centers (2003-2007). COPD was defined as: 1) FEV1/FVC <0.70, and 2) FEV1/FVC < lower limits of normal. Model inputs included age, outpatient or inpatient COPD-related ICD-9 codes, and the number of metered does inhalers (MDI) prescribed over the one year prior to and one year post spirometry. Model performance was assessed using standard criteria.
Results: 4564 of 9573 patients (47.7%) had an FEV1/FVC < 0.70. The presence of ≥1 outpatient COPD visit had a sensitivity of 76% and specificity of 67%; the AUC was 0.75 (95% CI 0.74-0.76). Adding the use of albuterol MDI increased the AUC of this model to 0.76 (95% CI 0.75-0.77) while the addition of ipratropium bromide MDI increased the AUC to 0.77 (95% CI 0.76-0.78). The best performing model included: ≥6 albuterol MDI, ≥3 ipratropium MDI, ≥1 outpatient ICD-9 code, ≥1 inpatient ICD-9 code, and age, achieving an AUC of 0.79 (95% CI 0.78-0.80).
Conclusion: Commonly used definitions of COPD in observational studies misclassify the majority of patients as having COPD. Using multiple diagnostic codes in combination with pharmacy data improves the ability to accurately identify patients with COPD.Department of Veterans Affairs, Health Services Research and Development (DHA), American Lung Association (CI- 51755-N) awarded to DHA, the American Thoracic Society Fellow Career Development AwardPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84155/1/Cooke - ICD9 validity in COPD.pd
Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.
A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease
Label-free, multi-scale imaging of ex-vivo mouse brain using spatial light interference microscopy
Brain connectivity spans over broad spatial scales, from nanometers to centimeters. In order to understand the brain at multi-scale, the neural network in wide-field has been visualized in detail by taking advantage of light microscopy. However, the process of staining or addition of fluorescent tags is commonly required, and the image contrast is insufficient for delineation of cytoarchitecture. To overcome this barrier, we use spatial light interference microscopy to investigate brain structure with high-resolution, sub-nanometer pathlength sensitivity without the use of exogenous contrast agents. Combining wide-field imaging and a mosaic algorithm developed in-house, we show the detailed architecture of cells and myelin, within coronal olfactory bulb and cortical sections, and from sagittal sections of the hippocampus and cerebellum. Our technique is well suited to identify laminar characteristics of fiber tract orientation within white matter, e.g. the corpus callosum. To further improve the macro-scale contrast of anatomical structures, and to better differentiate axons and dendrites from cell bodies, we mapped the tissue in terms of its scattering property. Based on our results, we anticipate that spatial light interference microscopy can potentially provide multiscale and multicontrast perspectives of gross and microscopic brain anatomy.ope
Reconsidering the Barefoot Doctor Programme
This paper examines the widely acclaimed Barefoot Doctor campaign in China. The Barefoot Doctor Campaign has come to symbolize the success of Chinese health care to the extent that it has become a model for WHO public health strategy. Yet little has been done to understand how or whether it worked on the ground and what difficulties and contradictions emerged in its implementation. Using previously unexplored party archives as well as newly collected oral interviews, this paper moves away from a narrow focus on party politics and policy formulation by examining the reality of health care at the local level and the challenges faced by local authorities and individuals as the campaigns evolved
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Optimal Receiver Antenna Location in Indoor Environment Using Dynamic Differential Evolution and Genetic Algorithm
[[abstract]]Using the impulse responses of these multipath channels, the bit error rate (BER) performance for binary pulse amplitude modulation impulse radio ultra-wideband communication system is calculated. The optimization location of receiving antenna is investigated by dynamic differential evolution (DDE) and genetic algorithm (GA) to minimize the outage probability. Numerical results show that the performance for reducing BER and outage probability by DDE algorithm is better than that by GA.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Urinary levels of N-nitroso compounds in relation to risk of gastric cancer: Findings from the Shanghai cohort study
Background: N-Nitroso compounds are thought to play a significant role in the development of gastric cancer. Epidemiological data, however, are sparse in examining the associations between biomarkers of exposure to N-nitroso compounds and the risk of gastric cancer. Methods: A nested case-control study within a prospective cohort of 18,244 middle-aged and older men in Shanghai, China, was conducted to examine the association between urinary level of N-nitroso compounds and risk of gastric cancer. Information on demographics, usual dietary intake, and use of alcohol and tobacco was collected through in-person interviews at enrollment. Urinary levels of nitrate, nitrite, N-nitroso-2-methylthiazolidine-4-carboxylic acid (NMTCA), N-nitrosoproline (NPRO), N-nitrososarcosine (NSAR), N-nitrosothiazolidine-4-carboxylic acid (NTCA), as well as serum H. pylori antibodies were quantified in 191 gastric cancer cases and 569 individually matched controls. Logistic regression method was used to assess the association between urinary levels of N-nitroso compounds and risk of gastric cancer. Results: Compared with controls, gastric cancer patients had overall comparable levels of urinary nitrate, nitrite, and N-nitroso compounds. Among individuals seronegative for antibodies to H. pylori, elevated levels of urinary nitrate were associated with increased risk of gastric cancer. The multivariate-adjusted odds ratios for the second and third tertiles of nitrate were 3.27 (95% confidence interval = 0.76-14.04) and 4.82 (95% confidence interval = 1.05-22.17), respectively, compared with the lowest tertile (P for trend = 0.042). There was no statistically significant association between urinary levels of nitrite or N-nitroso compounds and risk of gastric cancer. Urinary NMTCA level was significantly associated with consumption of alcohol and preserved meat and fish food items. Conclusion: The present study demonstrates that exposure to nitrate, a precursor of N-nitroso compounds, may increase the risk of gastric cancer among individuals without a history of H. pylori infection
Imaging Chromophores With Undetectable Fluorescence by Stimulated Emission Microscopy
Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.Chemistry and Chemical Biolog
- …
