219 research outputs found

    Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture

    Get PDF
    Most, if not all, unconditional results towards the abc-conjecture rely ultimately on classical Baker's method. In this article, we turn our attention to its elliptic analogue. Using the elliptic Baker's method, we have recently obtained a new upper bound for the height of the S-integral points on an elliptic curve. This bound depends on some parameters related to the Mordell-Weil group of the curve. We deduce here a bound relying on the conjecture of Birch and Swinnerton-Dyer, involving classical, more manageable quantities. We then study which abc-type inequality over number fields could be derived from this elliptic approach.Comment: 20 pages. Some changes, the most important being on Conjecture 3.2, three references added ([Mas75], [MB90] and [Yu94]) and one reference updated [BS12]. Accepted in Bull. Brazil. Mat. So

    IL-17 Expression in the Time Course of Acute Anti-Thy1 Glomerulonephritis

    Get PDF
    Background Interleukin-17 (IL-17) is a new pro-inflammatory cytokine involved in immune response and inflammatory disease. The main source of IL-17 is a subset of CD4+ T-helper cells, but is also secreted by non-immune cells. The present study analyzes expression of IL-17 in the time course of acute anti- thy1 glomerulonephritis and the role of IL-17 as a potential link between inflammation and fibrosis. Methods Anti-thy1 glomerulonephritis was induced into male Wistar rats by OX-7 antibody injection. After that, samples were taken on days 1, 5, 10 (matrix expansion phase), 15 and 20 (resolution phase). PBS-injected animals served as controls. Proteinuria and histological matrixes score served as the main markers for disease severity. In in vitro experiments, NRK-52E cells were used. For cytokine expressions, mRNA and protein levels were analyzed by utilizing RT-PCR, in situ hybridization and immunofluorescence. Results Highest IL-17 mRNA-expression (6.50-fold vs. con; p<0.05) was found on day 5 after induction of anti-thy1 glomerulonephritis along the maximum levels of proteinuria (113 ± 13 mg/d; p<0.001), histological glomerular-matrix accumulation (82%; p<0.001) and TGF-β1 (2.2-fold; p<0.05), IL-6 mRNA expression (36-fold; p<0.05). IL-17 protein expression co-localized with the endothelial cell marker PECAM in immunofluorescence. In NRK-52E cells, co-administration of TGF-β1 and IL-6 synergistically up-regulated IL-17 mRNA 4986-fold (p<0.001). Conclusions The pro-inflammatory cytokine IL-17 is up-regulated in endothelial cells during the time course of acute anti-thy1 glomerulonephritis. In vitro, NRK-52E cells secrete IL-17 under pro-fibrotic and pro-inflammatory conditions

    Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease

    Get PDF
    Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting

    The Origin of Minus-end Directionality and Mechanochemistry of Ncd Motors

    Get PDF
    Adaptation of molecular structure to the ligand chemistry and interaction with the cytoskeletal filament are key to understanding the mechanochemistry of molecular motors. Despite the striking structural similarity with kinesin-1, which moves towards plus-end, Ncd motors exhibit minus-end directionality on microtubules (MTs). Here, by employing a structure-based model of protein folding, we show that a simple repositioning of the neck-helix makes the dynamics of Ncd non-processive and minus-end directed as opposed to kinesin-1. Our computational model shows that Ncd in solution can have both symmetric and asymmetric conformations with disparate ADP binding affinity, also revealing that there is a strong correlation between distortion of motor head and decrease in ADP binding affinity in the asymmetric state. The nucleotide (NT) free-ADP (?-ADP) state bound to MTs favors the symmetric conformation whose coiled-coil stalk points to the plus-end. Upon ATP binding, an enhanced flexibility near the head-neck junction region, which we have identified as the important structural element for directional motility, leads to reorienting the coiled-coil stalk towards the minus-end by stabilizing the asymmetric conformation. The minus-end directionality of the Ncd motor is a remarkable example that demonstrates how motor proteins in the kinesin superfamily diversify their functions by simply rearranging the structural elements peripheral to the catalytic motor head domain

    White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities

    Get PDF
    White matter hyperintensities (WMHs) are frequently seen on brain magnetic resonance imaging scans of older people. Usually interpreted clinically as a surrogate for cerebral small vessel disease, WMHs are associated with increased likelihood of cognitive impairment and dementia (including Alzheimer's disease [AD]). WMHs are also seen in cognitively healthy people. In this collaboration of academic, clinical, and pharmaceutical industry perspectives, we identify outstanding questions about WMHs and their relation to cognition, dementia, and AD. What molecular and cellular changes underlie WMHs? What are the neuropathological correlates of WMHs? To what extent are demyelination and inflammation present? Is it helpful to subdivide into periventricular and subcortical WMHs? What do WMHs signify in people diagnosed with AD? What are the risk factors for developing WMHs? What preventive and therapeutic strategies target WMHs? Answering these questions will improve prevention and treatment of WMHs and dementia

    Emerging advances in biosecurity to underpin human, animal, plant, and ecosystem health.

    Full text link
    One Biosecurity is an interdisciplinary approach to policy and research that builds on the interconnections between human, animal, plant, and ecosystem health to effectively prevent and mitigate the impacts of invasive alien species. To support this approach requires that key cross-sectoral research innovations be identified and prioritized. Following an interdisciplinary horizon scan for emerging research that underpins One Biosecurity, four major interlinked advances were identified: implementation of new surveillance technologies adopting state-of-the-art sensors connected to the Internet of Things, deployable handheld molecular and genomic tracing tools, the incorporation of wellbeing and diverse human values into biosecurity decision-making, and sophisticated socio-environmental models and data capture. The relevance and applicability of these innovations to address threats from pathogens, pests, and weeds in both terrestrial and aquatic ecosystems emphasize the opportunity to build critical mass around interdisciplinary teams at a global scale that can rapidly advance science solutions targeting biosecurity threats.fals

    Diagnostic and cost utility of whole exome sequencing in peripheral neuropathy.

    Full text link
    OBJECTIVE: To explore the diagnostic utility and cost effectiveness of whole exome sequencing (WES) in a cohort of individuals with peripheral neuropathy. METHODS: Singleton WES was performed in individuals recruited though one pediatric and one adult tertiary center between February 2014 and December 2015. Initial analysis was restricted to a virtual panel of 55 genes associated with peripheral neuropathies. Patients with uninformative results underwent expanded analysis of the WES data. Data on the cost of prior investigations and assessments performed for diagnostic purposes in each patient was collected. RESULTS: Fifty patients with a peripheral neuropathy were recruited (median age 18 years; range 2-68 years). The median time from initial presentation to study enrollment was 6 years 9 months (range 2 months-62 years), and the average cost of prior investigations and assessments for diagnostic purposes AU$4013 per patient. Eleven individuals received a diagnosis from the virtual panel. Eight individuals received a diagnosis following expanded analysis of the WES data, increasing the overall diagnostic yield to 38%. Two additional individuals were diagnosed with pathogenic copy number variants through SNP microarray. CONCLUSIONS: This study provides evidence that WES has a high diagnostic utility and is cost effective in patients with a peripheral neuropathy. Expanded analysis of WES data significantly improves the diagnostic yield in patients in whom a diagnosis is not found on the initial targeted analysis. This is primarily due to diagnosis of conditions caused by newly discovered genes and the resolution of complex and atypical phenotypes

    Growth Arrest of BCR-ABL Positive Cells with a Sequence-Specific Polyamide-Chlorambucil Conjugate

    Get PDF
    Chronic myeloid leukemia (CML) is characterized by the presence of a constitutively active Abl kinase, which is the product of a chimeric BCR-ABL gene, caused by the genetic translocation known as the Philadelphia chromosome. Imatinib, a selective inhibitor of the Bcr-Abl tyrosine kinase, has significantly improved the clinical outcome of patients with CML. However, subsets of patients lose their response to treatment through the emergence of imatinib-resistant cells, and imatinib treatment is less durable for patients with late stage CML. Although alternative Bcr-Abl tyrosine kinase inhibitors have been developed to overcome drug resistance, a cocktail therapy of different kinase inhibitors and additional chemotherapeutics may be needed for complete remission of CML in some cases. Chlorambucil has been used for treatment of B cell chronic lymphocytic leukemia, non-Hodgkin's and Hodgkin's disease. Here we report that a DNA sequence-specific pyrrole-imidazole polyamide-chlorambucil conjugate, 1R-Chl, causes growth arrest of cells harboring both unmutated BCR-ABL and three imatinib resistant strains. 1R-Chl also displays selective toxicities against activated lymphocytes and a high dose tolerance in a murine model

    A Phylometagenomic Exploration of Oceanic Alphaproteobacteria Reveals Mitochondrial Relatives Unrelated to the SAR11 Clade

    Get PDF
    BACKGROUND: According to the endosymbiont hypothesis, the mitochondrial system for aerobic respiration was derived from an ancestral Alphaproteobacterium. Phylogenetic studies indicate that the mitochondrial ancestor is most closely related to the Rickettsiales. Recently, it was suggested that Candidatus Pelagibacter ubique, a member of the SAR11 clade that is highly abundant in the oceans, is a sister taxon to the mitochondrial-Rickettsiales clade. The availability of ocean metagenome data substantially increases the sampling of Alphaproteobacteria inhabiting the oxygen-containing waters of the oceans that likely resemble the originating environment of mitochondria. METHODOLOGY/PRINCIPAL FINDINGS: We present a phylogenetic study of the origin of mitochondria that incorporates metagenome data from the Global Ocean Sampling (GOS) expedition. We identify mitochondrially related sequences in the GOS dataset that represent a rare group of Alphaproteobacteria, designated OMAC (Oceanic Mitochondria Affiliated Clade) as the closest free-living relatives to mitochondria in the oceans. In addition, our analyses reject the hypothesis that the mitochondrial system for aerobic respiration is affiliated with that of the SAR11 clade. CONCLUSIONS/SIGNIFICANCE: Our results allude to the existence of an alphaproteobacterial clade in the oxygen-rich surface waters of the oceans that represents the closest free-living relative to mitochondria identified thus far. In addition, our findings underscore the importance of expanding the taxonomic diversity in phylogenetic analyses beyond that represented by cultivated bacteria to study the origin of mitochondria

    Leukocyte counts in urine reflect the risk of concomitant sepsis in bacteriuric infants: A retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When urine infections are missed in febrile young infants with normal urinalysis, clinicians may worry about the risk – hitherto unverified – of concomitant invasion of blood and cerebrospinal fluid by uropathogens. In this study, we determine the extent of this risk.</p> <p>Methods</p> <p>In a retrospective cohort study of febrile 0–89 day old infants evaluated for sepsis in an urban academic pediatric emergency department (1993–1999), we estimated rates of bacteriuric sepsis (urinary tract infections complicated by sepsis) after stratifying infants by urine leukocyte counts higher, or lower than 10 cells/hpf. We compared the global accuracy of leukocytes in urine, leukocytes in peripheral blood, body temperature, and age for predicting bacteruric sepsis. The global accuracy of each test was estimated by calculating the area under its receiver operating characteristic curve (AUC). Chi-square and Fisher exact tests compared count data. Medians for data not normally distributed were compared by the Kruskal-Wallis test.</p> <p>Results</p> <p>Two thousand two hundred forty-nine young infants had a normal screening dipstick. None of these developed bacteremia or meningitis despite positive urine culture in 41 (1.8%). Of 1516 additional urine specimens sent for formal urinalysis, 1279 had 0–9 leukocytes/hpf. Urine pathogens were isolated less commonly (6% vs. 76%) and at lower concentrations in infants with few, compared to many urine leukocytes. Urine leukocytes (AUC: 0.94) were the most accurate predictors of bacteruric sepsis. Infants with urinary leukocytes < 10 cells/hpf were significantly less likely (0%; CI:0–0.3%) than those with higher leukocyte counts (5%; CI:2.6–8.7%) to have urinary tract infections complicated by bacteremia (N = 11) or bacterial meningitis (N = 1) – relative risk, 0 (CI:0–0.06) [RR, 0 (CI: 0–0.02), when including infants with negative dipstick]. Bands in peripheral blood had modest value for detecting bacteriuric sepsis (AUC: 0.78). Cases of sepsis without concomitant bacteriuria were comparatively rare (0.8%) and equally common in febrile young infants with low and high concentrations of urine leukocytes.</p> <p>Conclusion</p> <p>In young infants evaluated for fever, leukocytes in urine reflect the likelihood of bacteriuric sepsis. Infants with urinary tract infections missed because of few leukocytes in urine are at relatively low risk of invasive bacterial sepsis by pathogens isolated from urine.</p
    corecore