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Abstract White matter hyperintensities (WMHs) are frequently seen on brain magnetic resonance imaging

scans of older people. Usually interpreted clinically as a surrogate for cerebral small vessel disease,
WMHs are associated with increased likelihood of cognitive impairment and dementia (including
Alzheimer’s disease [AD]). WMHs are also seen in cognitively healthy people. In this collaboration
of academic, clinical, and pharmaceutical industry perspectives, we identify outstanding questions
aboutWMHs and their relation to cognition, dementia, and AD.What molecular and cellular changes
underlie WMHs? What are the neuropathological correlates of WMHs? To what extent are demye-
lination and inflammation present? Is it helpful to subdivide into periventricular and subcortical
WMHs? What do WMHs signify in people diagnosed with AD? What are the risk factors for devel-
oping WMHs? What preventive and therapeutic strategies target WMHs? Answering these questions
will improve prevention and treatment of WMHs and dementia.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

1.1. What do we mean by white matter hyperintensities?

White matter hyperintensities (WMHs) of presumed
vascular origin are among the most prominent age-related
changes observed on brain magnetic resonance imaging
(MRI) scans [1]. WMHs are seen as diffuse areas of high
signal intensity (hence, “hyperintense”) on T2-weighted or
fluid-attenuated inversion recovery sequences [1–3]
(examples in Fig. 1). WMHs are broadly equivalent to leu-
koaraiosis seen on computed tomography scans [1]. The
variability in WMHs’ appearance is hypothesized to reflect
differences both in imaging parameters and also in etiology
and pathological severity.
1.2. WMHs represent increased water content

WMHs seen on MRI represent changes in white matter
composition, indicative of altered water content in hydro-
phobic white matter fibers and tracts. WMHs can be classi-
fied as specific or nonspecific depending on the water
content they present [4]. This water disproportion can also
vary with the brain area affected [4]. Radiologic insights
into WMH etiology can come from relaxometry, where the
magnetic resonance signal for water is manipulated using
different pulse sequences to derive various images. These
images have different contrast characteristics that provide
information about various aspects of the brain microstruc-
ture. Relaxometry can determine relaxation times (T1R: lon-
gitudinal relaxation time, T2*R: effective transversal
relaxation time), providing quantitation of the tissue struc-
ture and water content [4]. Diffusion tensor imaging pro-
vides further information on possible changes of the white
matter microstructure and expansion of theWMH penumbra
Fig. 1. MRI scans showing typical examples of WMHs of presumed vascular orig

tricular caps. This scan is Fazekas grade 1, on the Fazekas scale ofWMH severity (

of severe confluentWMH. Note that borders between periventricular and deep subc

Scans A-C are FLAIR sequences. Figure provided by GJ Biessels. Abbreviations:

FLAIR, fluid-attenuated inversion recovery.
over time [5]. Diffusion tensor imaging data, specifically dif-
ferences in fractional anisotropy (FA) and mean diffusivity,
suggest axonal damage [5]. Differences in water content can
also be associated with white matter edema [4].
2. Why are WMHs important?

2.1. Clinical impact of WMHs

In clinicalMRI scans of older people,WMHs are typically
interpreted as a surrogate of cerebral small vessel disease
(SVD) [1,2,6]. Because various pathologies can lead to
increased MRI signal intensity in white matter [6,7],
WMHs alone are not diagnostically specific. Notably,
distinguishing WMHs due to SVD from those of multiple
sclerosis and other inflammatory brain diseases or
metabolic leukodystrophies can be challenging. Moreover,
cortical degeneration common in older persons with
degenerative diseases (such as Alzheimer’s disease [AD];
see Section 5) can lead to degeneration of fiber tracts and sub-
sequent MRI changes.

Ample evidence supports a cross-sectional association be-
tween greater WMH volume and decrements in global or
domain-specific cognitive performance [1–3,8]. That said,
effect sizes are relatively small. A systematic review
concluded that WMHs explain a modest degree of cross-
sectional variation in cognition and cognitive decline [3].
WMHs are considered to be particularly correlated with re-
ductions in information-processing speed and executive func-
tion, although correlations with other cognitive domains have
also been noted [3,9]. Longitudinal studies in diverse
populations consistently demonstrate that increasing WMH
volume predicts cognitive decline, mild cognitive
impairment, incident dementia, stroke, and death [1–3,10].
in. (A) Punctate deep subcortical WMH in the left hemisphere and periven-

range: 0-3). In the right thalamus, a lacune can be seen. (B, C) Two examples

orticalWMHs become difficult to define. Scans B and C are Fazekas grade 3.

MRI, magnetic resonance imaging; WMHs, white matter hyperintensities;



Box 1. Vascular contributions to cognitive impairment

and dementia

� The concept of vascular contributions to cognitive
impairment and dementia (VCID) encompasses the
spectrum of vascular disease processes that impact
cognitive function [13,16]. Brain vascular
pathology is an important comorbidity in the
multietiology view of common sporadic dementias
of aging [14]. Mechanism-oriented VCID research
can be described as the aging brain vasculature
failing to cope with biological insults because of
vascular disease, proteinopathies,metabolic disease,
and immune affront. In 2016, a National Institutes of
Health-sponsored summit defined research priorities
in Alzheimer’s and related dementias [13]. One
output is the MarkVCID consortium, which is de-
signed for multisite development and validation of
small vessel VCID candidate biomarkers to the point
of readiness for large-scale clinical trials (see https://
markvcid.partners.org/).
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WMHs are also associated with decline in gait and related
aspects of physical performance [11,12]. Nevertheless, a
given individual may have extensive WMHs but minimal
cognitive impairment. WMH location, individual resilience
factors, and cognitive reserve likely determine clinical impact.

WMHs play a key role in lowering the threshold for the
clinical expression of dementia in the presence of neurode-
generative lesions [13,14], specifically, AD-related pathol-
ogy [15] (see Box 1). Although there is the possibility that
WMHs promote or interact with AD-related pathologies,
current data support an additive role for vascular pathologies
rather than a synergistic interaction with AD-related patho-
logical lesions [17].
2.2. WMHs in terms of clinical diagnostic criteria

The heterogeneity of WMH etiology and clinical mani-
festations present diagnostic challenges [18,19]. Even in
patients with dementia and significant WMHs, the vascular
contribution to the clinical phenotype may be missed if
neuroimaging is not performed. The National Institute of
Neurological Disorders and Stroke-Association
Internationale pour la Recherche et l’Enseignement en
Neurosciences criteria, a popular diagnostic framework for
clinical definition of vascular dementia, require clinical de-
mentia with a temporal relationship to a preceding stroke
with relevant imaging. In clinical practice, this may not be
straightforward, and most patients who exhibit WMHs
have no stroke history. It remains challenging to attribute
cognitive deficits to WMHs at an individual patient level.
Three examples of possible “vascular” clinical courses to
symptomatic cognitive impairment are illustrated in Fig. 2.
These archetypes rarely present in isolation, nevertheless
they illustrate the heterogeneity of vascular cognitive
impairment. Refined diagnostic criteria taking account of
the clinical course of WMHs are likely to be beneficial
[18,19].

2.2.1. Biochemical biomarkers for clinical use
Fluid biomarkers relevant to WMHs will be clinically

beneficial, reviewed elsewhere [20]. The low molecular
weight neurofilament marker (NF-L), extracellular metal-
loproteinase matrix metalloproteinase-9, tissue inhibitor
of metalloproteinase-1, the matrix metalloproteinase-2 in-
dex, and the albumin brain-plasma ratio are all increased
in people with clinical diagnosis of SVD. Peripheral blood
markers for WMHs, alongside fluid biomarkers related to
AD pathology, will help to subtype patients according to
their degree of AD pathology and brain vascular burden
[13,20,21].
3. Epidemiology of WMHs

3.1. Prevalence and progression of WMHs
3.1.1. Prevalence of WMHs
Most individuals older than 60 years have some degree of

WMH, and prevalence increases with age. In the Rotterdam
Scan Study, prevalence of subcortical WMHs increased by
0.2% per year of age, whereas periventricular WMHs
increased by 0.4% [22] (See Box 2). For participants aged
60-70 years, 87% had subcortical and 68% had periventric-
ular WMHs. For participants aged 80-90 years, 100% had
subcortical and 95% had periventricular WMHs [22]. This
age gradient of WMHs has been confirmed in a wider age
range (ages 20-90 years, Study of Health in Pomerania
cohort) [25]. In addition, many cognitively healthy younger
adults show some degree of WMH on MRI.

3.1.2. Progression of WMHs
Longitudinal studies of community-dwelling, healthy

older adults show increasing WMH severity or WMH vol-
ume over time [26]. Rates of progression are variable, likely
due to study-specific definitions of progression or duration
of follow-up. For example, in the Cardiovascular Health
Study, 28% of participants had a worsening WMH grade
(by at least 1 grade on a 0-9 visual rating scale) over five
years [27], whereas in the Rotterdam Scan Study, 39% had
progression ofWMH volume over 3.4 years [28]. In the Leu-
koaraiosis and Disability in the Elderly study, 74% exhibited
worsening over 3.1 years [29], and 84% had progression of
WMH volume over 9.1 years in the Oregon Brain Aging
Study [12]. Overall, longitudinal studies show annual in-
creases in WMH volume ranging from 4.4% to 37.2%
[26]. In some cohorts, decrease in WMH volume has been
reported, although effect sizes were small [30].

https://markvcid.partners.org/
https://markvcid.partners.org/


Fig. 2. Conceptual clinical courses leading to vascular dementia. (A) Multi-infarct dementia, stepwise pattern of cognitive decline. (B) Strategic vascular de-

mentia due to a focal lesion in a clinically eloquent site. One-step pattern, with some recovery. (C) WMH-associated subcortical vascular dementia. Slow pro-

gression without stepwise pattern. Figure provided by J Kwon. Abbreviation: WMH, white matter hyperintensity.
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3.2. Risk factors for WMHs

3.2.1. Nonmodifiable risk factors
WMHs are more prevalent at older ages, and some

studies support faster progression with advanced age (see
a recent review by Jorgensen et al) [26]. Black race, fe-
male sex, and apolipoprotein E ε4 allele presence have
all been associated with greater cross-sectional WMH
burden or WMH progression, although results have been
mixed [26,31].
3.2.2. Modifiable risk factors
Identified risk factors for WMH severity and progression

are primarily vascular, cardiometabolic, and nutritional [26].
Among these, associations are strongest for blood pressure–
related measures. In cross-sectional analyses, elevated blood
pressure is unequivocally associated with the presence or
severity of WMHs. Studies considering high blood pressure
earlier in life generally report an association with subsequent
WMHs. In the Rotterdam Scan Study, elevated blood pressure
was associated with increasedWMH risk 5 and 20 years later.



Box 2. Is it helpful to classify WMHs into subcortical

and periventricular?

� Subcortical WMHs are defined as isolated foci ap-
pearing in the superficial white matter, which in
most cases are not contiguous with periventricular
WMHs. The neuropathological substrates differ be-
tween the localizations [23,24] (see Section 4),
which can also have different risk factors and ef-
fects on cognition [1]. It has been proposed that
cognitive impairments associated with periven-
tricular WMHs reflect disruption of cholinergic
projections from the basal forebrain to the cortex.

� Elevated levels of activated microglia in periventric-
ular WMH indicate that these may particularly
involve neuroinflammatory responses following
disruption of the blood-brain barrier (BBB), see
Box 4. This response is not seen in subcortical
WMH [23]. In contrast, subcortical (but not peri-
ventricular) WMH volume was associated with lipid
peroxidation in blood, which mediated the effect of
hypertension, adding biological validity to a vascular
etiology for subcortical WMH [21]. There may be
further valid subdivisions within subcortical WMH.
Nevertheless, it may be premature to discriminate
periventricular from subcortical WMH clinically.
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Similarly, both midlife and late-life blood pressurewere asso-
ciated with increased WMH risk in the Cardiovascular Risk
Factors, Aging and Incidence of Dementia Study [32], and
elevated midlife blood pressure was related to late-life
WMHvolume in theNational Heart Lung, and Blood Institute
Twin Study [33]. There is mixed evidence for dyslipidemia as
a risk factor for WMHs. Omega-3 polyunsaturated fatty acids
have been associated with lower WMH burden. Neither dia-
betes mellitus nor insulin resistance is strongly related to
Box 3. White matter pathology and cognitive impairment in

� The rhesusmonkey has a brain structure similar to humans a
monkey adult life span is up to 40 years, and cognitive imp
20 years, with deficits in executive function, working memo
subcortical SVD). There is considerable variability betwee
while some are onlymildly impaired.Markers ofADpatholo
or absent and correlate poorly with cognitive impairment
preserved [34]. MRI shows age-related loss of forebrain w
matter tracts, both correlatedwith cognitive decline. Electro
splitting and ballooning of myelin sheaths, as well as com
myelin histopathology correlates well with FA reduction a
potential. Possible mechanisms for age-related white matte
mation, worsened by age-related reductions inmicroglial ac
white matter pathology, independent of neurodegeneration
WMHs, whereas fasting glucose has been related to WMH
progression. Greater visceral fat accumulation is more
strongly associated with WMHs than body mass index. To-
bacco smoking, higher blood levels of inflammatory markers
(C-reactive protein, interleukin-6), low levels of vitamin B12,
and hyperhomocysteinemia have all been associated with
WMHs (seeBox 4). These studies of risk factors are discussed
in a recent review by Jorgensen et al [26].

Elevated levels of activated microglia in periventricular
WMHs indicate that these may particularly involve neuroin-
flammatory responses after disruption of the blood-brain bar-
rier (BBB) (seeBox 4). This response is not seen in subcortical
WMHs [23]. In contrast, subcortical (but not periventricular)
WMH volume was associated with lipid peroxidation in
blood, which mediated the effect of hypertension, adding bio-
logical validity to a vascular etiology for subcortical WMHs
[21]. There may be further valid subdivisions within subcor-
tical WMHs. Nevertheless, it may be premature to discrimi-
nate periventricular from subcortical WMHs clinically.
4. Neuropathological changes that underlie WMHs

4.1. Types of underlying tissue damage in WMHs

The pathophysiology of SVD-associated white matter
histological lesions has been attributed to multiple mecha-
nisms, including hypoperfusion, defective cerebrovascular
reactivity, and BBB dysfunction [5,6,37–39]. The white
matter microvascular network likely contributes to WMH
pathogenesis, with vascular changes including arteriolar
tortuosity, loss of blood vessel density, and venous
collagenosis. Other possible mechanisms include
dysfunction of oligodendrocyte precursor cells [40] or
impaired perivascular (“glymphatic”) clearance. Different
presentations of WMHs indicate differences in underlying
pathological changes. For example, punctate WMHs
(considered to represent mild tissue changes) are associated
with myelin damage, gliosis, and enlarged perivascular
spaces, whereas extensive, confluent WMHs are considered
experimental primates

nd similar age-related decline in cognitive function [34]. The
airments appear from around 13 years and accelerate from
ry, and recognition memory (resembling clinical criteria for
n subjects, with the majority exhibiting severe impairments
gy (amyloid plaques, hyperphosphorylated tau) are variable
. Neuronal loss is not detectable, and gray matter is well
hite matter volume and decrease of FA in subcortical white
nmicroscopy shows accumulatingmyelin defects, including
plete degeneration of axons and their myelin. Age-related
nd with diminution in the corpus callosal compound action
r damage in monkeys include oxidative stress and inflam-
tivity andmyelin repair [34,35]. These observations point to
, as the source of age-related VCID in primates.



Box 4. Is inflammation a feature in WMHs?

� An explicit inflammatory process, in the manner of
multiple sclerosis, does not apply to WMHs of pre-
sumed vascular origin. Nevertheless, participation
of some inflammation-related molecules and cells
appears likely and merits deeper understanding. In
some large studies, circulating peripheral proin-
flammatory markers (e.g., C-reactive protein and
interleukin-6) have been associated with WMHs,
indicating possible involvement of inflammatory
pathways in WMHs. Other peripheral proin-
flammatory and anti-inflammatory cytokines (e.g.,
interleukin-8) are found elevated specifically in
people with a clinical AD diagnosis who also have
extensive WMHs [36].
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to represent more progressive pathological changes,
including some degree of myelin loss, axonal disruption,
and astrogliosis [6,7]. Pathological differences in WMHs
also occur based on anatomical location, for example,
when evaluating periventricular versus subcortical WMHs
(see Box 2) or watershed versus nonwatershed regions. Mi-
nor pathological changes associated with WMHs (at the
caps/rims of periventricular regions; Fig. 1) are most consis-
tent with disturbed cerebrospinal fluid transport and periven-
tricular edema, both of which accompany aging.

Watershed zones are bordered by the distal territories of
the anterior, middle, and posterior cerebral arteries. In an
event of hemodynamic compromise, watershed regions are
more susceptible to hypoperfusion and thus more likely to
develop ischemic (or oligemic) lesions. There are differ-
ences in the arteries supplying to the periventricular and
subcortical white matter. While long perforating branches
supply to the periventricular white matter, shorter branches
supply to the subcortical white matter.

WMH severity has been associated with microinfarcts
and diffuse amyloid plaque load in brains of people diag-
nosed with AD [41]. In the context of AD pathology, espe-
cially in late stages of the disease, it is conceivable that
some white matter lesions occur secondary to Wallerian
degeneration, triggered by cortical neurodegenerative pa-
thology [42]. More likely, AD pathology (common in older
people) and WMHs of vascular origin (even more common
in older people) frequently copresent as has been noted in
multiple autopsy-based studies on mixed pathologies [14].
4.2. Demyelination in WMHs

Early imaging studies indicated that severe WMHs are
related to cell death and myelin loss, see the studies by
Gouw et al and Schmidt et al [6,7], with early confluent
WMHs presenting more marked demyelination than
focal/punctate WMHs. Compared with subcortical WMHs,
periventricular WMHs show increased axonal loss,
astrocytosis, microglial density, and loss of oligodendrocytes.
There may also be lobar variability. Early myelin changes
may involve the frontal lobe, with subsequent gradual
involvement of the parietal, temporal, and occipital lobes [43].

Demyelination is not a universal feature ofWMHs. In addi-
tion to demyelination,myelin “pallor” has been confirmed as a
histological substrate ofWMHs.With aging, the ability of the
oligodendrocytes to regeneratemyelin sheaths decreases [40].
Towhat degree pallor represents loss ofmyelin sheaths or loss
ofmyelin secondary to axonal loss remains unresolved [44]. In
aged primates, cognitive impairment exacerbated by hyper-
tension is associated with myelin damage and microglial
changes within the white matter (Box 3).
4.3. Insights from MRI-histopathology correlative studies
of WMHs

Several studies have examined the underlying pathology
of WMHs using ex vivo MRI combined with histopathology
[6,37–39]. EarlyMRI-neuropathology correlative studies re-
ported ischemic changes, with evidence of plasma extrava-
sation (indicative of BBB dysfunction), rarefaction, or loss
of parenchymal tissue structure [45]. More advanced lesions
showed reduced myelin density [45]. These data are broadly
confirmed by more recent molecular studies [38,39].
5. Are WMHs related to Alzheimer’s disease?

We acknowledge a distinction between AD as a syndro-
mal diagnosis in living people and AD as a neuropathological
description or molecular etiology [15]. With regard to clin-
ical diagnosis, most people with AD diagnosis above the
age of 70 years have some degree ofWMHs. This may reflect
associated vascular pathology, consistent with autopsy
studies showing a high prevalence of mixed AD and vascular
pathologies [14]. To what extent AD neuropathology causes
WMHs (of vascular or nonvascular origin) is still debated.
Most amyloid PET studies found no association between b-
amyloid (Ab) tracer uptake and WMH burden [17,46].
Nevertheless, a recent study in the Alzheimer’s Disease
Neuroimaging Initiative cohort (using florbetapir instead of
Pittsburgh compound-B as the amyloid tracer) observed a
correlation between elevated brain Ab and WMHs [47].
Furthermore, in people carrying dominant AD mutations,
WMH volume remains elevated up to 20 years in advance
of cognitive symptoms, concomitant with altered levels of
Ab and tau in cerebrospinal fluid [48]. Because vascular dis-
ease is uncommon in these younger mutation-bearing per-
sons, these data suggest that AD pathology may be related
to vascular and/or nonvascular processes resulting inWMHs.

Cerebral amyloid angiopathy (CAA) is a common age-
related SVD, characterized by the accumulation of Ab in
the walls of cortical arterioles and leptomeningeal vessels
[46,49]. Some degree of histological CAA is present in
most (but not all) brains that contain AD
neuropathological hallmarks. CAA may contribute to the
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microvascular processes underlying WMHs (impaired
perivascular clearance, plasma extravasation,
inflammation, hypoperfusion, endothelial dysfunction)
[46]. Whether or not AD is concomitant, CAA plays a
distinct role in the spectrum of dementia [17,49].
6. Implications for treatment interventions

6.1. Nonpharmacological interventions

6.1.1. Physical activity and diet
A meta-analysis of cross-sectional observational studies

demonstrated that physical fitness and activitywere associated
with lower global WMH volume but had mixed results when
local WMHs (periventricular and subcortical) were examined
separately [50]. In relation to WMHs, few randomized-
controlled trials of physical activity have been carried out.
These studies have been restricted to prevention ofWMHpro-
gression as opposed to primary prevention. In older women,
twice weekly resistance training reduced WMH volume pro-
gression, relative to balance and toning control [24].

Observational cohort studies of diet and nutrition suggest
that the consumption of tuna/nonfried fish and theMediterra-
nean diet is associated with less WMH load [51,52]. Higher
plasma omega-3 polyunsaturated fatty acids (abundant in
both diets) are associated with less WMH-mediated execu-
tive function decline in aging, and these findings have led
to a randomized-controlled trial of omega-3 fatty acids for
the prevention of WMH accumulation (n-3 PUFA for
Vascular Cognitive Aging, NCT01953705).

6.1.2. Multidomain interventions
The Look AHEAD study tested a 10-year physical activ-

ity and dietary modification intervention in older adults who
are overweight and obese with type 2 diabetes mellitus.
Although there was no effect of the intervention on cognition
in theMRI substudy, the intervention group had significantly
lower WMH volume than the control group [53]. Similarly,
in the Evaluation of Vascular care in Alzheimer’s disease
study, participants with clinical AD diagnoses and MRI ev-
idence of SVD (WMHs, lacunar or cortical infarcts) were
randomized to either a multidomain approach (dietary and
physical activity counseling, smoking cessation, and phar-
macologic treatment of cardiovascular risk factors) or stan-
dard care. Those randomized to the composite intervention
had reduced progression of WMH (but not global atrophy
or new infarcts) [54].
6.2. Pharmacological interventions
6.2.1. Blood pressure medications
Randomized clinical trial subanalyses indicate that effec-

tive antihypertensive therapy reduces WMH incidence.
Treatment with an angiotensin-converting enzyme (ACE)
inhibitor over 36 months reduced the WMH number and
total WMH volume in the Perindopril Protection Against
Recurrent Stroke Study trial [55]. An observational cohort
study suggested that treatment with an angiotensin receptor
blocker, versus an ACE inhibitor, was associated with
smaller WMH volumes in people with a clinical AD diag-
nosis [56]. An MRI substudy of the Prevention of dementia
by intensive vascular care trial suggested a beneficial effect
in the sub-group with large baseline WMH volume, but
found no overall impact of intensive vascular management
on WMH progression [57]. A trial of intensive versus stan-
dard blood pressure control (based on ambulatory blood
pressure) is ongoing in individuals who are either normal
or mildly impaired on cognition and mobility, with WMH
progression as a secondary outcome [58]. The results of
the Systolic Blood Pressure Intervention Trial (SPRINT-
MIND) of intensive versus standard blood pressure control
on WMH were presented at Alzheimer’s Association Inter-
national Conference 2018. This trial demonstrated reduced
mild cognitive impairment in the intensive treatment arm
(though this was not a primary endpoint of the trial) [59].
The effect of two years of treatment with either ACE inhib-
itor or angiotensin II receptor blockers on an outcome of
SVD progression, includingWMHs and silent brain infarcts,
is currently being tested [60].

6.2.2. Statins
Nearly three years of treatment with 40 mg of pravastatin

daily in the Pravastatin in elderly individuals at risk of
vascular disease (PROSPER) study did not reduce WMH
progression over the placebo group in individuals with
increased vascular risk [61].

6.2.3. Antithrombotic agents
The ASPirin in Reducing Events in the Elderly

(ASPREE-NEURO) study is evaluating 100 mg of aspirin
daily versus placebo over one year, with a secondary
outcome of WMH volume change [62].
7. Concluding comments

Converging data from clinical, neuropathological, and
experimental studies has begun to unravel WMH mecha-
nisms. We are optimistic that the next ten years will see sub-
stantial advances in molecular understanding and clinical
management of WMHs and VCID. Deeper molecular under-
standing of the various etiologies and pathologies that lead to
WMHs will improve diagnostic specificity. It will also
enable more refined medicinal chemistry for generating
improved biomarkers (both imaging and biochemical) and
novel therapeutic agents. Better structural and molecular
biomarkers will serve as endpoints in clinical trials of tar-
geted treatments, based on pathological understanding.
How the WMH profile of a given dementia patient should
guide treatment, while minimizing adverse clinical out-
comes, remains a fertile field for clinical research.
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Currently, treatment of WMHs of presumed vascular
origin is limited to lifestyle modifications and risk factor
management. Given the associations between WMHs and
vascular risk factors, it is imperative to target vascular health
throughout the life course as a prevention strategy. At a so-
cietal level, there are enormous opportunities for policy
makers to combat the 21st century obesogenic environment,
which contributes significantly to poor vascular and meta-
bolic health. Effective regulations on the content of foods
(e.g., sugar in food and drinks), clear labeling of food prod-
ucts, and food marketing (to children in particular) will
likely have more health-care impact than any drug.

Scientific progress is needed in the following areas: (1)
application of emerging diagnostic criteria to identify
different subtypes of WMHs, possibly with differing etiol-
ogy, outcomes, and clinical significance; (2) robust differen-
tial biomarkers to discriminate different pathologies (SVD,
CAA, and AD), their possible interactions, and their relation
to VCID; (3) consensus on segregation algorithms (e.g., def-
initions of regional WMH boundaries); (4) animal models
relevant to WMHs of different pathological origin; (5)
further detailed MRI-histopathology correlative studies to
encompass the range of WMH-related lesion characteristics;
(6) hypothesis-driven, randomized-controlled trials of drugs
and other interventions targeting WMHs.
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RESEARCH IN CONTEXT

1. Systematic review: This perspective came from a
multidisciplinary author team, across a range of
seniority from graduate students to emeritus profes-
sors. Citations provided come from the authors’
expertise and from PubMed. We did not attempt a
formal systematic review.

2. Interpretation: We aimed i) to summarise the knowl-
edge base on WMHs and their relation to cognitive
impairment, ii) to identify perceived knowledge
gaps related to WMHs, particularly those relevant
to accelerating dementia therapies.

3. Future directions: Molecular studies in human tissue
and bio-fluid samples will yield biological under-
standing of the processes that underlie WMHs, hence
better biomarkers (both imaging and biochemical)
and molecular targets for drug treatment.
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