2 research outputs found

    Exploring the Ecological History of a Tropical Agroforestry Landscape Using Fossil Pollen and Charcoal Analysis from Four Sites in Western Ghats, India

    Get PDF
    Contrary to expectations, some human-modified landscapes are considered to sustain both human activities and biodiversity over the long-term. Agroforestry systems are among these landscapes where crops are planted under native shade trees. In this context, ancient agroforestry systems can provide insight into how farmers managed the landscape over time. Such insight can help to quantify the extent to which tropical forests (especially habitat-specialist trees) are responding to local and landscape-level management. Here, we extracted fossil pollen (indicator of past vegetation changes) and macroscopic charcoal (indicator of biomass burning) from four forest hollows’ sedimentary sequences in an ancient agroforestry system in Western Ghats, India. We used a mixed-modelling approach and a principal components analysis (PCA) to determine past trajectories of forest change and species composition dynamics for the last 900 years. In addition, we reconstructed the long-term forest canopy dynamics and examined the persistence of habitat-specialist trees over time. Our results show that the four sites diverged to a surprising degree in both taxa composition and dynamics. However, despite these differences, forest has persisted over 900 years under agricultural activities within agroforestry systems. This long-term analysis highlights the importance of different land-use legacies as a framework to increase the effectiveness of management across tropical agricultural lands

    A new method for extracting skin microbes allows metagenomic analysis of whole-deep skin

    Get PDF
    In the last decade, an extensive effort has been made to characterize the human microbiota, due to its clinical and economic interests. However, a metagenomic approach to the skin microbiota is hampered by the high proportion of host DNA that is recovered. In contrast with the burgeoning field of gut metagenomics, skin metagenomics has been hindered by the absence of an efficient method to avoid sequencing the host DNA. We present here a method for recovering microbial DNA from skin samples, based on a combination of molecular techniques. We have applied this method to mouse skin, and have validated it by standard, quantitative PCR and amplicon sequencing of 16S rRNA. The taxonomic diversity recovered was not altered by this new method, as proved by comparing the phylogenetic structure revealed by 16S rRNA sequencing in untreated vs. treated samples. As proof of concept, we also present the first two mouse skin metagenomes, which allowed discovering new taxa (not only prokaryotes but also viruses and eukaryots) not reachable by 16S rRNA sequencing, as well as to characterize the skin microbiome functional landscape. Our method paves the way for the development of skin metagenomics, which will allow a much deeper knowledge of the skin microbiome and its relationship with the host, both in a healthy state and in relation to disease
    corecore