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Abstract

In the last decade, an extensive effort has been made to characterize the human microbiota, due to its clinical and
economic interests. However, a metagenomic approach to the skin microbiota is hampered by the high proportion of
host DNA that is recovered. In contrast with the burgeoning field of gut metagenomics, skin metagenomics has been
hindered by the absence of an efficient method to avoid sequencing the host DNA. We present here a method for
recovering microbial DNA from skin samples, based on a combination of molecular techniques. We have applied this
method to mouse skin, and have validated it by standard, quantitative PCR and amplicon sequencing of 16S rRNA.
The taxonomic diversity recovered was not altered by this new method, as proved by comparing the phylogenetic
structure revealed by 16S rRNA sequencing in untreated vs. treated samples. As proof of concept, we also present
the first two mouse skin metagenomes, which allowed discovering new taxa (not only prokaryotes but also viruses
and eukaryots) not reachable by 16S rRNA sequencing, as well as to characterize the skin microbiome functional
landscape. Our method paves the way for the development of skin metagenomics, which will allow a much deeper
knowledge of the skin microbiome and its relationship with the host, both in a healthy state and in relation to disease.
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Introduction

Despite the great interest of skin as an ecosystem, the study
of skin microbiome has been recurrently limited by the low
host-commensal cell ratio and the high taxonomical divergence
among skin sites [1]. The skin is the most external organ in the
mammalian body. Its main role is to protect the internal tissues
and interact with the external environment, collecting
information, preventing loss of temperature and moisture, and
defending the body against pathogenis [2,3]. After a long co-
existence between host skin cells and the microorganisms that
attempt to colonize the body, a set of bacteria consolidated into
a skin commensal/mutualistic microbiota. This microbiota is
distributed in multiple niches, depending on the amount of
nutrients and the physical properties that might result in the
most suitable growth conditions for them [4]. The effect of
commensal-host interaction may lead to complex behaviors of
the whole host system, which, beyond the skin, involves also
the immune system [5]. Understanding how the whole system
works may lead to crucial knowledge of skin physiology that

may be highly relevant to public health and cosmetic
pharmacology. Moreover, and under certain conditions
(including the host genetic predisposition), the skin microbiota
may intervene in the disruption of the skin homeostasis,
leading to complex skin diseases, such as atopic dermatitis,
psoriasis or eczema. Then, the knowledge of these bacterial
disease triggers is crucial to clinical dermatology [6].

Historically, the study of skin microbiota has been severely
limited. Culture-based characterization has been shown to be
restricted only to the species that grow rapidly under standard
laboratory conditions, which are estimated at just ~1% of the
species in the skin [7]. Although more complex culture media
have been generated, the main solution has come from the
culture-independent methods for studying the composition of
the microbiota. The most successful approach relies in
amplifying the phylogenetic informative 16S ribosomal RNA
gene regions from the bacterial community (16S rRNA). This
has been applied to most human body habitats, including the
gut, oral cavity, or skin, among others [8-10]. Specifically in
skin, these pioneering studies have shown a high diversity in
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microbiota composition, which is highly dependent on the skin
physical conditions [11], thus defining a large amount of
possible niches. Variability in skin microbiota has been shown
to be site-to-site more diverse than between the left- and right-
hand sites of the same individual, or between the same sites in
different individuals [11].

But second, and more interestingly, the most diverse regions
have been shown to be at least as diverse as the gut
microbiota. 16S rRNA amplification can identify the species
present and their dynamics, but it provides limited or null
information about bacterial gene composition, cell function and
dynamics, or on microbe-microbe or microbe-host interactions.
This limitation has been solved with shotgun high throughput
sequencing, pioneered in soil and ocean metagenomic studies
[12-14], and applied to functional analyses of the gut bacterial
communities [15]. But, despite the success of the functional
analysis of other human microbiomes [16-20], this method
cannot be applied to the skin microbiome, which occupies all
upper layers on the skin, making deep sequencing inefficient
and expensive due to the high amount of host DNA being
sequenced. Recently a large dataset of human skin
microbiome samples has been published under the Human
Microbiome Project Consortium [21]. However, those samples
have been collected using non invasive superficial
methodologies that do not access the full microbiota, or specific
subniches such as the eccrine sweat glands or the hair follicle,
where a specific diversity may be found and where microbes
may be more active [1,9]. Thus, although a wider perspective
has been achieved with this methodology, a prokaryotic DNA
enrichment is a crucial step for deep skin metagenomic
analysis. For that reason, we propose a new approach that
allows prokaryotic DNA isolation making subsequent shotgun
high throughput sequencing feasible and efficient. This protocol
is based on the combination of enzymatic digestion of all
bounds between skin cells, and the subsequent separation of
cells by size without disrupting their integrity, avoiding the
contamination by host DNA. As proof of concept we present
the metagenomic analysis of two murine deep-skin
microbiomes. Given the long-time use of mouse as a model,
and the evolutionary relationship between mice and other
mammals, we think that murine validation of this method may
extend to human skin samples, and may also allow retrieving
higher quality, more relevant information than that obtained
with a less invasive sampling process.

Materials and Methods

Mouse skin sampling
Eight healthy C57BL/6J mice of 8 weeks of age were

included in this study. All steps of animal handling were carried
out to minimize the stress of the animals while keeping them
isolated to reduce possible microbiota share. All mice were
euthanized through cervical dislocation, according to a local
IRB-board (PRBB, IACU committee) approved protocol, and a
region of 3x3 cm was excised from the dorsum-lumbar region,
using a sterile blade, and frozen in liquid nitrogen to preserve
the integrity of the skin. The samples were subsequently split
using a 6 mm punch blade and stored at -80°C until further

experiments. All mice followed the same feeding rate, and were
born and housed under the same conditions in an animal core
facility, accredited by AAALAC International. Of these
individuals, six were used to test bacterial diversity (named B1
to B6 when used for bacterial enrichment and T1 to T6 for total
DNA extraction) and two, namely Sample A and Sample B, for
metagenomic analysis.

A negative control was included in the analysis to test all
possible materials and reagent contaminations.

Procedure
The proposed method and its validation is shown in File S1.

A graphical diagram of the procedure can be seen in Figure 1.
In brief, a 6mm skin sample was digested three times using a
buffered enzymatic solution in constant shaking. The resulting
solution was sequentially filtered using sterile nylon filters,
eliminating all the host cells.

To avoid mitochondrial contamination (see File S1 for further
information), mitochondria were eliminated through flow
cytometry, leaving only cells with a genome size larger than
0.5Mb.The remaining cells were then digested and DNA was
collected using a standard Phenol-Chloroform method.

The method was validated in two different aspects: host,
contaminant, and bacterial DNA was quantified, and the
taxonomic composition obtained was compared with that
obtained with a standard DNA extraction without microbial DNA
enrichment.

Finally, the method was tested by performing a metagenomic
analysis of two mouse skin samples, presenting for the first
time a functional assessment of the deep skin microbiota.

Results

Microbial and host DNA detection by standard PCR in
the proposed method

Skin samples were collected from genetically and
environmental homogeneous mice to reduce as much as
possible the environmental variability that could affect the
diversity of the skin microbiota. Our method resulted in the
successful isolation of around 5 ng of DNA (ranging from 3.2
ng to 8.7 ng). We tried to amplify a host gene, IRGA6, and the
bacterial 16S rRNA to assess the ability of our protocol to
substantially reduce the amount of host DNA. No band was
observed in the IRGA6 amplification, but all of 16S rRNA
amplification resulted in one size-specific band (Figure S1).
Control DNA extraction, as expected, resulted in a specific
band in both 16S and IRGA6 genes. No visible bands were
observed in any of the samples or extraction methods for the
primate-specific NPIP gene used to monitor human
contamination. The mock sample used to check possible
reagent contamination failed to amplify for any of the three
methods. Specific negative controls for each primer pair also
failed to produce any visible amplfication.

Host DNA reduction test by qPCR
A qPCR experiment was performed using the same genes

and the same samples, to measure the actual amount of host
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Figure 1.  Schematic description of the proposed method.  
doi: 10.1371/journal.pone.0074914.g001
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DNA in each method (Figure S2). Cq values are shown in the
Table S1. The quantitative PCR analyses showed the same
trend than the previous standard amplification protocol.
Although in most cases bacterial DNA yield was reduced in the
method proposed due to the retention of bacteria by nylon
filters, no statistical difference was observed (Chi-square p-
value=0.089), while host DNA yield was significantly reduced
beyond the limit of detection of the termocycler (Cq > 35) in all
cases (p-value<10-5). If we consider that the standard curve
minimum was set at 10-4 ng for host DNA, with a Cq of 32,
values of Cq over 35 suggest a complete elimination of host
DNA from the sample. The mock sample produced Cq values
that were similar to those of the negative control (16S
amplification Cq = 33.08/33.46, IRGA6 amplification Cq =
37.27/36.89). The differences between the mock sample and
the negative control would come from the different reagents in
both samples, since the mock sample followed the same
process than the rest of the samples while the negative control
was performed using nuclease-free water as template. We
observed that 16S amplification always resulted in a negative
amplification over the 30th cycle, which implies that the 16S
amplification of mock sample may be considered as negative
[22].

Diversity bias assessment
Taking into account the bacterial DNA yield reduction, the

following question was to assess whether the reduction was
associated with a loss of diversity in our skin bacterial
community. The bacterial 16S rRNA gene was amplified in all
samples and extraction methods and sequenced using parallel-
tagged 454 titanium technologies, resulting in 654,472
sequences with lengths ranging between 50 and 850
nucleotides. Of these, 645,474 reads (98.6%) passed all filters
of length and quality and were used for further analyses.
Pooled reads were split by sample resulting in 19 samples with
reads, ranging from 1,000 to 22,000 reads per sample. The
mock sample just yielded 17 low-quality reads, and was thus
eliminated from further analyses. Given the absolute
differences between samples, a random subsampling without
replacement was performed, and repeated 200 times;
statistical analyses were corrected with the false discovery rate
approach.

At the same time, pooled sequences were clustered using
the greedy algorithm implemented in CD-HIT resulting in 8,696
and 1,275 OTUs at identity levels 99% and 97%, respectively
[23]. A phylogenetic tree was constructed using the prior
probabilities and seed tree provided by RaxML using the
default configuration [24]. As our alignment contained only 181
phylogenetically informative positions, which are not sufficient
to classify the 1,275 phylotypes, we used the reference
sequences from the NCBI to construct the tree. Taking into
account the stringency of our assignment, the resulting tree
can be considered representative and more realistic than the
tree resulting from using only the 181 informative positions.
Figure S3 shows the phylogenetic architecture of our
community, where Proteobacteria were abundant, (mean
frequency,79%; standard deviation,8%; Figure S4). An average
53.7% of the Proteobacteria reads belonged to

gammaproteobacteria (compared to an average 38.4% of
betaproteobacteria, 7.3% of alphaproteobacteria, and 0.6% of
all other classes). But in terms of taxonomic diversity, we
observed that most samples tended to carry more species
belonging to the betaproteobacteria genera than to the rest of
Proteobacteria classes. The rest of OTUs were spread in
several bacterial phyla, but most sequences were assigned to
firmicutes, actinobacteria, and bacterioidetes, the other three
principal phyla previously associated with mammalian skin
microbiota [11].

To further test whether the phylogenetic composition
retrieved may be altered with this method, the taxonomic
abundance was compared between the new and the standard
protocols. Interestingly, the bacterial enrichment method yields
a higher number of phylotypes compared with the standard
method. The same trend was also observed with Shannon
Diversity and Rarefaction curves(Table S2 and Figure S5).
However, differences among groups are not statistically
significant (Wilcoxon test. p-value = 0.327). Samples appear to
be different, but they do not cluster by method. Canonical
correspondence analysis (CCA) shows no separation by
sample or extraction method (Figure 2) [25-27]. Principal
Coordinate Analysis (PCoA) analysis shows concordant results
(Figure S11). We did not observe any statistical significant
difference either among samples (ANOVA, p= 0.13) or among
methods (p = 0.29), based on distance dissimilarities.
Moreover, non-metric multidimesional scaling (NMDS) showed
a complete scattering and admixture of the samples showing
also no aggregation by method (Figures S6 and S7). Taxon
abundances were not statistically significantly different among
samples (p =0.375) or among extraction methods (p =0.795).

Metagenomic library preparation and proof of concept
Two independent samples were extracted according to the

method proposed. Sheared DNA was blunt-end repaired and
ligated to the adaptors. Library quantification was performed
with qPCR, and the correct amount was used for emPCR and
sequencing according to the method adaptation from Zheng et
al [28], resulting in 60,488 (sample A, MG-RAST accession
number 4496968.3) and 65,647 reads (sample B, 4496969.3).

In both samples, 95% of reads were assigned to bacteria
(Figure 3), 1.92% to other commensals (fungi, arthropods), and
0.02% to host DNA. Thus, the enrichment protocol has resulted
both in a total amount of DNA (~ 5 ng) and in a proportion of
microbial DNA that make a metagenomic analysis feasible.

Most of the bacterial reads belonged to the Proteobacteria
phylum (85% of reads in sample A and 88% in sample B)
whereas the presence of the rest of phyla was quite limited,
except for Firmicutes. These proportions are similar to those
observed with 16S rRNA sequencing (Figure S4). In lower
taxonomical levels, a difference appears between samples:
Sample A seemed to be less diverse than sample B. Although
in both samples Gammaproteobacteria was the dominant
class, the presence of other classes was quite limited in
sample A, whereas in sample B the presence of other classes,
such as Betaproteobacteria, was higher. The same pattern
occurred at lower taxonomical levels. For example, 74% of the
reads of sample A were assigned to the order
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Figure 2.  Canonical Correspondence Analysis (CCA) of the bacterial diversity in skin in Standard and Proposed
methods.  Methods are labelled B for Bacterial Enrichment extraction and T for Total DNA extraction.
doi: 10.1371/journal.pone.0074914.g002
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Pseudomonadales and only 48% in sample B. In this sample
the presence of Burkholderiales and Enterobacteriales was
higher (16% and 15% respectively) than in sample A (around
2% both). At family and genus levels, Moraxellaceae (72% in
sample A and 48% in sample B) and Acinetobacter (71% and
45%), respectively, were the dominant taxa. These results
agree with the 16S taxonomical distribution for both
methodologies. To confirm the methodology validation,
samples A and B were processed with both methodologies and

amplified for 16S rRNA. Taxonomic distribution was compared
with the 6 previous samples used to validate the method. 16S
rRNA amplification of samples A and B produced a taxonomic
disribution that was similar to the other samples, supporting the
previous validation (Figure S12). We obtained the taxonomic
distribution in samples A and B with two methods:
metagenomics and and 16S amplification. 16S rRNA
amplification of samples A and B retrieved 32 and 41 different
genera, compared to 40 and 76 different bacterial genera

Figure 3.  Comparison of the relative abundance of bacteria in skin metagenomic samples.  454 reads were split by taxonomy
at class level. Relative abundance was log transformed to reduce the drastic differences among taxa assignation. Samples A (red)
and B (blue) are faced by taxa, to facilitate the comparison.
doi: 10.1371/journal.pone.0074914.g003
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obtained by metagenomic sequencing after applying the same
subsampling approach previously mentioned. In contrast, raw
metagenomic data was assigned to 177 and 368 bacterial
genera, highly increasing the diversity observed by 16S rRNA
amplification. Shannon diversity in 16S was statistically lower
than that observed by metagenomic characterization (1.14 vs
2.46 after random bootstrap subsampling with 200 replicates;
two tailed t-test. p = 1.45×10-8). Taxonomic assignation of
metagenomic samples A and B in NMDS shows a clear
separation from those processed with amplification methods
(Figure S13). A large number of taxa was present exclusively in
metagenomic datasets, compared to the 16S rRNA datasets.
16S amplification of samples A and B clusters together with the
rest of the samples amplified, while metagenomic datasets
from sample A and B behave independently (Figure S14).

In addition, the metagenomic approach allowed discovering
non-bacterial species. 1.8% of all the dataset was assigned to
Eukarya, and of those, 56% was assigned to Fungi, 13% to
Arthropoda, and less than 20% to Chordata. Fungi classes
such as Dothideomycetes [29], Eurotiomycetes [30], and
Leotiomycetes, among others (Figure 3), have been observed
in our dataset, and have previously been isolated from
mammalian skin. Interestingly, a wide range of plant classes
were also retrieved.

Functional analysis was performed using hidden Markov
models (HMM) constructed with the multiple alignments of the
functional categories from the COG [31] and eggNOG [32]
orthology databases. At COG 1 level, unknown function or
general function prediction, both categories assigned to
unknown function categories, were the most frequent function
in both samples (53.3% and 27.2% each). Within the known
functions, catabolism, as expected, was the most frequent,
comprising mostly protein and carbohydrate degradation
(11.93% and 29.85% respectively). Other categories such as
nitrogen metabolism or respiration were also enriched,
although to a lesser degree. Although in general, Sample B
was more diverse than Sample A, similar trends were observed
in both samples.

Following on the functional analysis, datasets were split
taxonomically, to assess similarities and differences at
functional level for each taxonomic subcluster. The functional
distribution in both samples was different due to the different
rate of reads assigned to the unknown function cluster, but at
taxonomic subsystems the differences were more dramatic.
Relative abundance patterns were different among taxonomic
subsamples (Figure 4). Although we observe that the basic
functional trends are present in all class clusters (including
replication, protein and energy production), the most abundant
function present in each sample and each taxonomic cluster
was different. For instance, genes assigned to motility were
enriched in the Bacteroidia cluster from sample B, but not in
other class clusters of the same sample or in any of the
taxonomic clusters from sample A. In general, the functional
signal from sample B was broader and stronger than that from
sample A, in agreement with the reduced diversity observed.
Sample A was enriched in replication, recombination and repair
genes, and this trend was shared by distant taxonomic groups,
suggesting a possible environmental effect affecting the

functionality and diversity of skin microbiota of mouse A. But
differences were observed even in taxonomic groups with a
wide range of functions observed, such as
Alphaproteobacteria. Taxonomic clusters were analyzed using
PCoA (Figure S8) and NMDS (Figure S9). In both cases, they
showed no association by taxon. While Sample B aggregated
around the centroid, suggesting that functions were
homogeneous at all taxonomic levels, sample A was more
spread, meaning that some functions were associated with
particular taxonomic groups.

Discussion

Here we present a new method, based in cell and molecular
biology techniques, to sharply reduce the amount of host DNA
from a skin biopsy sample obtained with standard procedures.
We have validated the new method in terms of isolation,
efficiency and taxonomic bias inferred by qPCR results. With
this protocol we have obtained 95% of bacterial DNA recovery
compared to less than 1% expected by direct skin biopsy DNA
extraction and sequencing (standard procedures). On average,
we obtained 5 ng of bacterial DNA, which is sufficient to
prepare a sample using the protocol by Zheng et al. [28].
Although pool sequencing was performed to obtain equimolar
quantities of each sample, we observed a bias on the resulting
read count for each sample. Keeping in mind that the
quantification of samples prior to the pooling was done by
qPCR, the variance in sequence retrieval difference is likely to
be due to stochastic variables of the sequencing procedure or
differences in the efficiency of the fusion primers used for the
experiment. Nevertheless, the taxonomic structure was
maintained, even recovering more diversity than in standard
procedures, including eukaryotic members of the microbial
consortium associated with the skin. The importance of
detecting fungi or arthropods is clear since they are also
commensals, and may also be involved in the maintenance of
the skin homoeostasis. It is important to note that we could
detect those organisms even with the tight particle size
restrictions imposed by our method. Our results are in
agreement with the phylogenetic diversity observed in other
skin microbiome 16S rRNA studies [9,33], which implies that
our method does not introduce any major taxonomic bias.
Moreover, our study unveils that mouse skin carries a smaller
number of phylotypes, dominated by Proteobacteria, in
comparison with other environments such as gut, where
Firmicutes and Bacteroidetes are the most abundant, or human
skin where the predominant phylum seems to be variable
according to the skin niche analyzed [11,34,35]. Rarefaction
curves (Figure S10) show lower numbesr of phylotypes per
1000 reads, with a gentler slope those observed in gut [36].
These results agree with previous 16S-based works [9,10,33],
implying that the use of this method does not entail a bias and,
in addition, new taxa may be discovered.

This protocol allows not only the taxonomical
characterization of the skin microbiota but also to explore the
functionality of that microbiota and the possible biochemical
and molecular relationships among its individuals and between
the microbiota and the host. Two samples were processed
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using our method, and were fully sequenced to see differences
in taxonomy and function, compared to the results obtained
from 16S rRNA analysis; for the first time, a functional analysis
of deep-skin microbiota can be produced. Besides the
differences in the taxonomic distribution, one can also uncover
previously unknown functional trends that occur on the skin
ecosystem, which may have an important impact in health and
cosmetic pharmaceutics.

The different functional databases used produce different
results based on specific biases of their original datasets, and
therefore we used different databases to characterize the
functional annotation of the skin metagenomes. Although
catabolism was the most abundant functional category in our
datasets, other traits can be considered more interesting;
categories such as respiration, nitrogen metabolism and other
clusters associated with aerobiosis were enriched. Amino acid
metabolism and protein degradation were also important in our
dataset. However, this may be related to taxonomic

abundances and, then, it must be taken carefully.
Nevertheless, all these trends are in agreement with the
particularities of skin as an ecosystem, considering the
continuous skin replacement and the direct contact with the
atmosphere.

One of the most interesting questions that can be addressed
using metagenomic data is the functional niche occupied by
each taxonomic group, which has been called the “who does
what” question. However, despite the fact that this question can
only be answered with transcription data, one may approximate
the analysis to the “who can do what”, with functional analysis
of metagenomic data. Even if our main goal was to obtain a
proof of concept for the new methodology proposed, the
functional analysis applied to taxonomic specific data showed
interesting results. In some of the taxonomic clusters we
observe different functions associated to them in either sample.
This functional divergence at the same taxonomic level
suggests that although the main functional roles are present in

Figure 4.  Metagenomic profiles of Skin metagenomes, split by taxa.  Classification was made first by taxonomic assignation
using PhymmBL, and then functional classification was based on EggNOG using HMM classification. Counts were normalized by
sample and taxa using log transformation. The color gradient indicates the level of representation for that taxa. Hierarchical
clustering was performed by function and taxon.
doi: 10.1371/journal.pone.0074914.g004
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those samples, and maintain the specific functional repertoire
associated with the skin ecosystem, the functional roles taken
by many taxa were different in each sample. These differences
may be due to specific events that only occurred to each
mouse, specific metabolic or immune characteristics of each
mouse or it was due to some bias produced by the procedure
in that specific sample. Further sampling and research is
needed to understand the skin from an ecosystem point of
view.

Using this protocol, the level of knowledge of the skin
microbiota may be brought to the level of the widely analyzed
gut and oral microbiota, in which microbiota has been related to
physiological and pathological changes in the host [37-39]. The
gut microbiota has been related to immune system and gut
differentiation [38,40-42] and chronic inflammatory diseases
[18,43,44]. With this method we open a new door to explore the
skin microbiota and its possible implications in complex
behaviors of skin, including skin complex diseases, as it has
occurred with the gut and oral microbiomes.

However, one of the most striking points of this methodology
is the facility to translate it to other host-microbiome scenarios.
The most interesting case, and the easiest to apply, is the gut.
It is understandable that none of the metagenomic studies
performed in gut has been performed in biopsies, given the low
bacterial/host DNA ratio in them. This is why, up to date, all gut
metagenomic studies have been performed in feces. The same
problem occurs in the oral ecosystem, where most studies
have been performed in swabs and plaque extraction, where
host cell loads are low. In fact, the most recent paper from the
Human Microbiome Project Consortium was performed using
swabbing methods in 18 regions [21]. But the bacteria in close
relationship with the host cells, those in constant contact, are
the most important in the progression and the maintenance of
the ecosystem homoeostasis, and should be studied in more
detail.

Although all the previous ideas are only suggestions, we
think that the method can be a strong advance in the field of
metagenomics and all its variants. Working with deep epithelial
biopsies would shed light into the host-microbiota relationships
in any conditions, pushing further the studies of host-microbiota
interactions and its relationship in health and complex
diseases.

Data Access

16S rRNA data from the 12 samples is deposited on the MG-
RAST database with public accession numbers from
4523521.3 to 4523536.3. Metagenomic data from both
samples is deposited on the MG-RAST database with the
accession numbers 4496968.3 and 4496969.3.

Supporting Information

Figure S1.  Standard Amplification of Host, Bacterial and
Contaminant DNA. Gel visualization of the bacterial (16S),
host (IRGA6) and human contaminant (NPIP) gene standard
amplification in 12 independent samples, plus a host and a
human contaminant controls. Each amplification was

performed independently with its own negative control for 16S.
Host and contaminant controls were tested independently with
their own negative control.
(PDF)

Figure S2.  Quantification of host and bacterial DNA by
qPCR. Amplification curves of 16S rRNA (red) and IRGA6
(green) genes were tested and compared among standard and
proposed method. Two equivalent samples were processed to
render the amplification curves comparable. Differences on Cq
can be interpreted as differences in the amount of DNA on that
sample for a given DNA type.
(PDF)

Figure S3.  Phylogenetic tree reconstruction by RAxML.
Reference phylogenetic tree obtained by Maximum Likelihood
analysis of the alignment of 16S reference sequences obtained
from RDP and selected by similarity, using CD-HIT. Triangle
height indicates phylogenetic diversity within each group. On
the right hand panel, relative abundances of each taxon.
(PDF)

Figure S4.  Comparison of the relative abundance of
bacteria in skin samples using both methodologies of
extraction. 16S DNA sequences were assigned to the genus
level. Only genera with more than three sequences assigned
were used for the analysis. Then whole information was
clustered to class level. Methods are named by the capital
letter (B from Bacterial Enrichment extraction and T from Total
DNA extraction).
(PDF)

Figure S5.  Phylogenetic diversity rarefaction curves for
the different samples and methods. Rarefaction curves
based on phylogenetic clusters at 97% similarity. Curves were
normalized to 10,000 sequences according to the expected
slope.
(PDF)

Figure S6.  Nonmetric Multidimensional Scaling Analysis
of 16S rDNA diversity in standard and bacterial
Enrichment methods. First, NMDS was constructed for
Sample diversity, using a Manhattan distance matrix and 20
replicates. The resulting rank matrix was reduced to two
dimensions, which were used to construct the graph. Colors
(blue and red) separate both methods following the same
pattern as in figures in the main paper. NMDS matrix was
constructed for taxa diversity using the same distance
algorithm. Both matrices were normalized one to each other to
be comparable. Taxa diversity was plotted by name. Letter size
was associated with the relative mean abundance of each
taxon. Color was selected by class, using a phylum-based
chart.
(PDF)

Figure S7.  NMDS analysis of 16S rDNA diversity in
standard and bacterial enrichment methods (alternative
view). Additional perspective of the NMDS taxonomic
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distribution. Taxonomic categories (genera) are colored
according to their class category classification.
(PDF)

Figure S8.  Correspondence Analysis (CoA) of the
bacterial function in skin samples, separated by taxa.
Samples are represented by color (Sample A in red, sample B
in blue), and functions by letter, using the standard eggNOG
function category code.
(PDF)

Figure S9.  Non-metric Multidimensional Scaling analysis
of the taxonomic-based functional diversity for
metagenomic samples. Manhattan Distance matrix was
constructed for each of the sample-specific taxonomic clusters.
Rank classification and dimension scaling was constructed
based on the distance matrix. Samples are represented by
colour (Sample A in red, Sample B in blue).
(PDF)

Figure S10.  Phylogenetic diversity rarefaction curves for
metagenomic samples. Rarefaction curves were constructed
by random sampling of reads with taxonomic assignment,
using the taxonomic information previously obtained.
(PDF)

Figure S11.  Principal Coordinate Analysis of 16S
taxonomic distribution abundances. Bray-Curtis Distance
matrix was calculated based on the resampled taxonomic
abundances at genus level, for each sample from the validation
step. Genus were colored according to their ‘class’ category.
Extraction methods were labelled with a capital letter (B as
bacterial enrichment and T as total extraction).
(PDF)

Figure S12.  Principal Coordinate Analysis of 16S
taxonomic distribution abundances. Samples A and B were
processed according to the validation step of 16S rRNA
amplification, using both methodologies. The Bray-Curtis
Distance matrix was calculated for each sample, and
dimension scaling was performed using the PCoA method.
Samples were named and highlighted by method (bacterial
enrichment method in blue, total DNA extraction in red)..
(PDF)

Figure S13.  NonMetric Multidimensional Scaling
taxonomic analysis of 16S and Metagenomic datasets. The
metagenomic method was compared to 16S rRNA
amplification in the same samples. In light blue, we see the
Samples A and B metagenomic datasets and in dark blue the
16S amplification of the same samples. Color dots show
taxonomic entities at genus level, colored by class. As control
we have included the 16S rRNA amplifications of the remaining
samples included in the work to compare the relative positions
on the 2-dimensional space of the metagenomic and the 16S
rRNA methodologies.
(PDF)

Figure S14.  16S rRNA and metagenomic data comparison
and between-class analysis of Taxonomic assignment.
A) Principal Coordinate Analysis of Sample dissimilarities. The
Bray-Curtis distance was calculated and used to calculate the
principal coordinates. Color tags and names were used to
differentiate between the three different methodologies:
Metagenomic Assignation (in black), bacterial enrichment
(blue) and total DNA isolation (red).
B) Principal Coordinate Analysis of taxa dissimilarities. Points
show the genera distribution across the dimension-reduced
space, and color tags were used to differenciate taxonomic
units (at class level).
To construct the clusters in both cases, the Calinski-Harabasz
index was used to estimate the optimal number of clusters.
Cluster analysis was performed using the cluster package in R.
Between-class analysis was performed to assess the variance
from the centroid point for each cluster. Graphical interpretation
was performed using the package ade4.
(PDF)

File S1.  Supplementary materials and methods.
(DOCX)

Table S1.  qPCR values for bacterial 16S rRNA and the
murine IRGA6 gene. B, samples enriched for bacteria; T,
total extraction samples.
(DOCX)

Table S2.  Diversity measurements of 16S rRNA
sequences. Diversity indexes (Shannon diversity index, Chao1
Richness and ACE) were calculated for each sample given a
family-based abundance table. B, bacterial enrichment
samples; T, total extraction samples; Samples A and B for
metagenomic samples.
SE, Standard Error; ACE, Abundance-base Coverage
Estimator. Undefined (NaN) values appear when all rare taxa
are only assigned as singletons.
(DOCX)
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