87 research outputs found

    Controlling spin pumping into superconducting Nb by proximity-induced spin-triplet Cooper pairs

    Get PDF
    Proximity-induced long-range spin-triplet supercurrents, important for the field of superconducting spintronics, are generated in superconducting/ferromagnetic heterostructures when interfacial magnetic inhomogeneities responsible for spin mixing and spin flip scattering are present. The multilayer stack Nb/Cr/Fe/Cr/Nb has been shown to support such currents when fabricated into Josephson junction devices. However, creating pure spin currents controllably in superconductors outside of the Josephson junction architecture is a bottleneck to progress. Recently, ferromagnetic resonance was proposed as a possible direction, the signature of pure supercurrent creation being an enhancement of the Gilbert damping below the superconducting critical temperature, but the necessary conditions are still poorly established. Here, we demonstrate that pumping pure spin currents into a superconductor in the presence of an external magnetic field is only possible when conditions supporting proximity-induced spin-triplet effects are satisfied. Our study is an important step forward for pure spin supercurrent creation, considerably advancing the field of superconducting spintronics

    Identification of a mitotic recombination hotspot on chromosome III of the asexual fungus Aspergillus niger and its possible correlation elevated basal transcription

    Get PDF
    Genetic recombination is an important tool in strain breeding in many organisms. We studied the possibilities of mitotic recombination in strain breeding of the asexual fungus Aspergillus niger. By identifying genes that complemented mapped auxotrophic mutations, the physical map was compared to the genetic map of chromosome III using the genome sequence. In a program to construct a chromosome III-specific marker strain by selecting mitotic crossing-over in diploids, a mitotic recombination hotspot was identified. Analysis of the mitotic recombination hotspot revealed some physical features, elevated basal transcription and a possible correlation with purine stretches

    Detection of Mycobacterium leprae DNA from Archaeological Skeletal Remains in Japan Using Whole Genome Amplification and Polymerase Chain Reaction

    Get PDF
    BACKGROUND: Identification of pathogen DNA from archaeological human remains is a powerful tool in demonstrating that the infectious disease existed in the past. However, it is very difficult to detect trace amounts of DNA remnants attached to the human skeleton, especially from those buried in a humid atmosphere with a relatively high environmental temperature such as in Asia. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate Mycobacterium leprae DNA from archaeological skeletal remains in Japan by polymerase chain reaction, DNA sequencing and single nucleotide polymorphism (SNP) analysis. In addition, we have established a highly sensitive method of detecting DNA using a combination of whole genome amplification and polymerase chain reaction, or WGA-PCR, which provides superior sensitivity and specificity in detecting DNA from trace amounts of skeletal materials. CONCLUSION/SIGNIFICANCE: We have detected M. leprae DNA in archaeological skeletal remains for the first time in the Far East. Its SNP genotype corresponded to type 1; the first detected case worldwide of ancient M. leprae DNA. We also developed a highly sensitive method to detect ancient DNA by utilizing whole genome amplification

    Smoking cessation opportunities in severe mental illness (tobacco intensive motivational and estimate risk — TIMER—): study protocol for a randomized controlled trial

    Get PDF
    There is an increased risk of premature death in people with severe mental illness (SMI). Respiratory disorders and cardiovascular disease are leading causes of increased mortality rates in these patients, and tobacco consumption remains the most preventable risk factor involved. Developing new tools to motivate patients towards cessation of smoking is a high priority. Information on the motivational value of giving the lung age and prevention opportunities is unknown in this high-risk population. In the context of community care, screening and early detection of lung damage could potentially be used, together with mobile technology, in order to produce a prevention message, which may provide patients with SMI with a better chance of quitting smoking.This study receives funding by the Spanish Ministry of Economy, Industry and Competitiveness, Instituto Carlos III (FIS PI16/00802)

    Sharing vocabularies: towards horizontal alignment of values-driven business functions

    Get PDF
    This paper highlights the emergence of different ‘vocabularies’ that describe various values-driven business functions within large organisations and argues for improved horizontal alignment between them. We investigate two established functions that have long-standing organisational histories: Ethics and Compliance (E&C) and Corporate Social Responsibility (CSR). By drawing upon research on organisational alignment, we explain both the need for and the potential benefit of greater alignment between these values-driven functions. We then examine the structural and socio-cultural dimensions of organisational systems through which E&C and CSR horizontal alignment can be coordinated to improve synergies, address tensions, and generate insight to inform future research and practice in the field of Business and Society. The paper concludes with research questions that can inform future scholarly research and a practical model to guide organizations’ efforts towards inter-functional, horizontal alignment of values-driven organizational practice

    Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone

    Get PDF
    The dorsal part of the developing telencephalon is one of the brain areas that has suffered most drastic changes throughout vertebrate evolution. Its evolutionary increase in complexity was thought to be partly achieved by the appearance of a new neurogenic niche in the embryonic subventricular zone (SVZ). Here, a new kind of amplifying progenitors (basal progenitors) expressing Tbr2, undergo a second round of divisions, which is believed to have contributed to the expansion of the neocortex. Accordingly, the existence of a pallial SVZ has been classically considered exclusive of mammals. However, the lack of studies in ancient vertebrates precludes any clear conclusion about the evolutionary origin of the SVZ and the neurogenic mechanisms that rule pallial development. In this work, we explore pallial neurogenesis in a basal vertebrate, the shark Scyliorhinus canicula, through the study of the expression patterns of several neurogenic markers. We found that apical progenitors and radial migration are present in sharks, and therefore, their presence must be highly conserved throughout evolution. Surprisingly, we detected a subventricular band of ScTbr2-expressing cells, some of which also expressed mitotic markers, indicating that the existence of basal progenitors should be considered an ancestral condition rather than a novelty of mammals or amniotes. Finally, we report that the transcriptional program for the specification of glutamatergic pallial cells (Pax6, Tbr2, NeuroD, Tbr1) is also present in sharks. However, the segregation of these markers into different cell types is not clear yet, which may be linked to the lack of layering in anamniotesThis work was supported by the Spanish Ministerio de Economía y Competitividad-FEDER (BFU2014-5863-1P)S

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties
    corecore