121 research outputs found

    fMRI evidence of ‘mirror’ responses to geometric shapes

    Get PDF
    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control

    Vicarious Learning from Human Models in Monkeys

    Get PDF
    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object–reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models

    New Caledonian crows rapidly solve a collaborative problem without cooperative cognition

    Get PDF
    There is growing comparative evidence that the cognitive bases of cooperation are not unique to humans. However, the selective pressures that lead to the evolution of these mechanisms remain unclear. Here we show that while tool-making New Caledonian crows can produce collaborative behavior, they do not understand the causality of cooperation nor show sensitivity to inequity. Instead, the collaborative behavior produced appears to have been underpinned by the transfer of prior experience. These results suggest that a number of possible selective pressures, including tool manufacture and mobbing behaviours, have not led to the evolution of cooperative cognition in this species. They show that causal cognition can evolve in a domain specific manner-understanding the properties and flexible uses of physical tools does not necessarily enable animals to grasp that a conspecific can be used as a social tool

    Interferon-γ Regulates the Proliferation and Differentiation of Mesenchymal Stem Cells via Activation of Indoleamine 2,3 Dioxygenase (IDO)

    Get PDF
    The kynurenine pathway (KP) of tryptophan metabolism is linked to antimicrobial activity and modulation of immune responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells (MSCs and NSCs) express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO) and IDO2, that it is highly regulated by type I (IFN-β) and II interferons (IFN-γ), and that its transcriptional modulation depends on the type of interferon, cell type and species. IFN-γ inhibited proliferation and altered human and mouse MSC neural, adipocytic and osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation

    Wild redfronted lemurs (Eulemur rufifrons) use social information to learn new foraging techniques

    Get PDF
    Recent research has claimed that traditions are not a unique feature of human culture, but that they can be found in animal societies as well. However, the origins of traditions in animals studied in the wild are still poorly understood. To contribute comparative data to begin filling this gap, we conducted a social diffusion experiment with four groups of wild redfronted lemurs (Eulemur rufifrons). We used a ‘two-option’ feeding box, where these Malagasy primates could either pull or push a door to get access to a fruit reward to study whether and how these two behavioural traits spread through the groups. During a pre-training phase, two groups were presented with boxes in which one technique was blocked, whereas two groups were presented with unblocked boxes. During a subsequent unconstrained phase, all four groups were confronted with unblocked boxes. Nearly half of the study animals were able to learn the new feeding skill and individuals who observed others needed fewer unsuccessful task manipulations until their first successful action. Animals in the two groups with pre-training also discovered the corresponding alternative technique but preferred the seeded technique. Interestingly, animals in the two groups without pre-training discovered both techniques, and one group developed a group preference for one technique whereas the other did not. In all groups, some animals also scrounged food rewards. In conclusion, redfronted lemurs appear to use social information in acquiring a novel task, and animals in at least in one group without training developed a group preference for one technique, indicating that they have the potential to develop behavioural traditions and conformity

    Fish Intelligence, Sentience and Ethics

    Get PDF
    Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people’s perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal’s intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious. The implications for affording the same level of protection to fish as other vertebrates are great, not least because of fishing-related industries. Here, I review the current state of knowledge of fish cognition starting with their sensory perception and moving on to cognition. The review reveals that fish perception and cognitive abilities often match or exceed other vertebrates. A review of the evidence for pain perception strongly suggests that fish experience pain in a manner similar to the rest of the vertebrates. Although scientists cannot provide a definitive answer on the level of consciousness for any nonhuman vertebrate, the extensive evidence of fish behavioural and cognitive sophistication and pain perception suggests that best practice would be to lend fish the same level of protection as any other vertebrate

    The bodily social self: a link between phenomenal and narrative selfhood

    Get PDF
    The Phenomenal Self (PS) is widely considered to be dependent on body representations, whereas the Narrative Self (NS) is generally thought to rely on abstract cognitive representations. The concept of the Bodily Social Self (BSS) might play an important role in explaining how the high level cognitive self-representations enabling the NS might emerge from the bodily basis of the PS. First, the phenomenal self (PS) and narrative self (NS), are briefly examined. Next, the BSS is defined and its potential for explaining aspects of social cognition is explored. The minimal requirements for a BSS are considered, before reviewing empirical evidence regarding the development of the BSS over the first year of life. Finally, evidence on the involvement of the body in social distinctions between self and other is reviewed to illustrate how the BSS is affected by both the bottom up effects of multisensory stimulation and the top down effects of social identification
    corecore