34 research outputs found
The role of urban boundary layer investigated with high-resolution models and ground-based observations in Rome area: a step towards understanding parameterization potentialities
Abstract. The urban forcing on thermodynamical conditions can greatly influence the local evolution of the atmospheric boundary layer. Heat stored in an urban environment can produce noteworthy mesoscale perturbations of the lower atmosphere. The new generation of high-resolution numerical weather prediction models (NWP) is nowadays often applied also to urban areas. An accurate representation of cities is key role because of the cities' influence on wind, temperature and water vapor content of the planetary boundary layer (PBL). The Advanced Weather Research and Forecasting model WRF (ARW) has been used to reproduce the circulation in the urban area of Rome. A sensitivity study is performed using different PBL and surface schemes. The significant role of the surface forcing in the PBL evolution has been investigated by comparing model results with observations coming from many instruments (lidar, sodar, sonic anemometer and surface stations). The impact of different urban canopy models (UCMs) on the forecast has also been investigated. One meteorological event will be presented, chosen as statistically relevant for the area of interest. The WRF-ARW model shows a tendency to overestimate the vertical transport of horizontal momentum from upper levels to low atmosphere if strong large-scale forcing occurs. This overestimation is partially corrected by a local PBL scheme coupled with an advanced UCM. Moreover, a general underestimation of vertical motions has been verified
The March 2022 exceptional heatwave recorded in the isotopic composition of precipitation at Dome C, East Antarctica
An exceptional heatwave impacted on East Antarctica between March 15 and 19, 2022, causing some of the highest temperature anomalies ever measured on Earth. The heat transport was associated to an atmospheric river bringing a moisture flux from lower latitudes to inner Antarctica. Several locations, from coastal sites to the high Antarctic Plateau, experienced record temperatures. The air temperature measured at Concordia Station by the automatic weather station of the Italian Antarctic national research program (PNRA) reached a maximum of -11.7°C.
The temperature signal is imprinted in the oxygen and hydrogen isotopic composition of precipitation: this is what allows paleoclimate reconstructions from the isotopic records in ice cores, although post-depositional processes such as the interactions between snow and atmosphere and within the snow column might affect the pristine isotopic signal.
Since 2008, precipitations have been collected daily at Concordia Station for δ18O and δD measurements; the activities have been carried out under the PNRA project WHETSTONE and will continue in the framework of the PNRA project AIR-FLOC. Isotopic values from 2008 to 2021 range between -82.63‰ and -26.97‰ for δ18O and between -595.1‰ and -223.0‰ for δD, while water stable isotope data from February to April 2022, show unprecedented high values (δ18O =-18.97‰, δD=-147.9‰), the highest recorded over the last 15 years, in correspondence to the exceptional temperatures and snow precipitations. Moreover, the daily snowfall collected during the same period reached a cumulative value of ~4.3 mm w.e. representing ~18% of the 2022 cumulative annual value (24.1 mm w.e.)
Quantitative precipitation estimation over antarctica using different ze-sr relationships based on snowfall classification combining ground observations
Snow plays a crucial role in the hydrological cycle and energy budget of the Earth, and remote sensing instruments with the necessary spatial coverage, resolution, and temporal sampling are essential for snowfall monitoring. Among such instruments, ground-radars have scanning capability and a resolution that make it possible to obtain a 3D structure of precipitating systems or vertical profiles when used in profiling mode. Radars from space have a lower spatial resolution, but they provide a global view. However, radar-based quantitative estimates of solid precipitation are still a challenge due to the variability of the microphysical, geometrical, and electrical features of snow particles. Estimations of snowfall rate are usually accomplished using empirical, long-term relationships between the equivalent radar reflectivity factor (Ze) and the liquid-equivalent snowfall rate (SR). Nevertheless, very few relationships take advantage of the direct estimation of the microphysical characteristics of snowflakes. In this work, we used a K-band vertically pointing radar collocated with a laser disdrometer to develop Ze-SR relationships as a function of snow classification. The two instruments were located at the Italian Antarctic Station Mario Zucchelli. The K-band radar probes the low-level atmospheric layers, recording power spectra at 32 vertical range gates. It was set at a high vertical resolution (35 m), with the first trusted range gate at a height of only 100 m. The disdrometer was able to provide information on the particle size distribution just below the trusted radar gate. Snow particles were classified into six categories (aggregate, dendrite aggregate, plate aggregate, pristine, dendrite pristine, plate pristine). The method was applied to the snowfall events of the Antarctic summer seasons of 2018–2019 and 2019–2020, with a total of 23,566 min of precipitation, 15.3% of which was recognized as showing aggregate features, 33.3% dendrite aggregate, 7.3% plates aggregate, 12.5% pristine, 24% dendrite pristine, and 7.6% plate pristine. Applying the appropriate Ze-SR relationship in each snow category, we calculated a total of 87 mm water equivalent, differing from the total found by applying a unique Ze-SR. Our estimates were also benchmarked against a colocated Alter-shielded weighing gauge, resulting in a difference of 3% in the analyzed periods
Atmospheric synoptic conditions of snow precipitation in East Antarctica using ice core and reanalysis data
In the framework of the International Partnerships in Ice Core Sciences (IPCS) initiatives the GV7 site (70°41’ S – 158°51’ E) in East Antarctica was chosen as the new drilling site for the Italian contribution to the understanding of the climatic variability in the last 2000 years (IPICS 2k Array). Water stable isotopes and snow accumulation (SMB) values from a shallow firn core, obtained at GV7 during the 2001-2002 International Trans-Antarctic Scientific Expedition (ITASE) traverse, are analyzed and compared with different meteorological model output in order to characterize the atmospheric synoptic conditions driving precipitation events at the site. On annual basis, ECMWF +24h forecasted snowfalls (SF) seem to well reproduce GV7 SMB values trend for the period from 1980 to 2005. Calculated air mass back-trajectories show that Eastern Indian - Western Pacific oceans represent the main moisture path toward the site during autumn - winter season. Analysis of the ECMWF 500 hPa Geopotential height field (GP500) anomalies shows that atmospheric blocking events developing between 130°E and 150°W at high latitudes drive the GV7 SMB by blocking zonal flow and conveying warm and moist deep air masses from ocean into the continental interior. On inter-annual basis, The SF variability over GV7 region follows the temporal oscillation of the third CEOF mode (CEOF3 10% of the total explained variance) of a combined complex empirical orthogonal function (CEOF) performed over GP500 and SF field. The CEOF3 highlights an oscillating feature, with wavenumber 2, in GP500 field over the Western Pacific-Eastern Indian Oceans and propagating westward. The pattern is deeply correlated with the Indian Dipole Oscillation and ENSO and their associated quasi-stationary Rossby waves propagating from the lower toward the higher latitudes
Ten years of isotopic composition of precipitation at Concordia Station, East Antarctica
Oxygen and Hydrogen isotopic composition (delta18O and deltaD) in ice cores has been widely used as a proxy for reconstructing past temperature variations. However, the atmospheric dynamics determining the precipitation isotopic composition on the Antarctic Plateau are yet to be fully understood, as well as the post-depositional processes modifying the pristine snow isotopic signal: both are fundamental for the interpretation of the isotopic records from deep Antarctic ice cores drilled in low accumulation areas in order to improve past temperature reconstructions.
Since 2008, daily precipitation has been continuously collected by the winter-over personnel on raised surfaces (height: 1 m) placed in the clean area of Concordia Station on the East Antarctic plateau. Each sample has been analyzed for 18O, D and deuterium excess (d): this represents a unique record, still ongoing, for the isotopic composition of precipitation in inland Antarctica.
In order to better comprehend the relationship between local temperature and the isotopic signal of precipitation, temperature data (T2m) from the Dome C Automatic Weather Station of the Programma Nazionale di Ricerche in Antartide (PNRA) were correlated with precipitation sample delta18O, deltaD and d from 2008 to 2017. A significant positive correlation between delta18O and deltaD of precipitation and T2m is observed when using both daily and monthly-averaged data. The measured precipitation isotopic data were also compared to the simulated delta18O, deltaD and d from the isotope-enabled atmospheric general circulation models ECHAM5-wiso and ECHAM6-wiso, with the latter showing significant improvement in simulating the isotopic data of precipitation
A Nine-year series of daily oxygen and hydrogen isotopic composition of precipitation at Concordia station, East Antarctica
The atmospheric processes determining the isotopic composition of precipitation on the Antarctic plateau are yet to be fully understood, as well as the post-depositional processes altering the snow pristine isotopic signal. Improving the comprehension of these physical mechanisms is of crucial importance for interpreting the isotopic records from ice cores drilled in the low accumulation area of Antarctica, e.g., the upcoming Beyond EPICA drilling at Little Dome C.
Up to now, few records of the isotopic composition of precipitation in Antarctica are available, most of them limited in time or sampling frequency. Here we present a 9-year long δ18O and δD record (2008-2016) of precipitation at Concordia base, East Antarctica. The snow is collected daily on a raised platform (1 m), positioned in the clean area of the station; the precipitation collection is still being carried out each year by the winter over personnel.
A significant positive correlation between isotopes in precipitation and 2-m air temperature is observed at both seasonal and interannual scale; the lowest temperature and isotopic values are usually recorded during winters characterized by a strongly positive Southern Annular Mode index.
To improve the understanding of the mechanisms governing the isotopic composition of precipitation, we compare the isotopic data of Concordia samples with on-site observations, meteorological data from the Dome C AWS of the University of Wisconsin-Madison, as well as with high-resolution simulation results from the isotope-enabled atmospheric general circulation models ECHAM5-wiso and ECHAM6-wiso, nudged with the ERA-Interim and ERA5 reanalyses respectively
Sea salt sodium record from Talos Dome (East Antarctica) as a potential proxy of the Antarctic past sea ice extent
Antarctic sea ice has shown an increasing trend in recent decades, but with strong regional differences from one sector to another of the Southern Ocean. The Ross Sea and the Indian sectors have seen an increase in sea ice during the satellite era (1979 onwards). Here we present a record of ssNa+ flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent in the Ross Sea and Western Pacific Ocean at least for recent decades. After finding a positive relationship between the maxima in sea ice extent for a 25-year period, we used this relationship in the TALDICE record in order to reconstruct the sea ice conditions over the 20th century. Our tentative reconstruction highlighted a decline in the sea ice extent (SIE) starting in the 1950s and pointed out a higher variability of SIE starting from the 1960s and that the largest sea ice extents of the last century occurred during the 1990s
Three-year monitoring of stable isotopes of precipitation at Concordia Station, East Antarctica
Past temperature reconstructions from Antarctic ice cores require a good quantification and understanding of the relationship between snow isotopic composition and 2m air or inversion (condensation) temperature. Here, we focus on the French-Italian Concordia Station, central East Antarctic plateau, where the European Project for Ice Coring in Antarctica (EPICA) Dome C ice cores were drilled. We provide a multi-year record of daily precipitation types identified from crystal morphologies, daily precipitation amounts and isotopic composition. Our sampling period (2008-2010) encompasses a warmer year (2009, +1.2 degrees C with respect to 2m air temperature long-term average 1996-2010), with larger total precipitation and snowfall amounts (14 and 76% above sampling period average, respectively), and a colder and drier year (2010, -1.8 degrees C, 4% below long-term and sampling period averages, respectively) with larger diamond dust amounts (49% above sampling period average). Relationships between local meteorological data and precipitation isotopic composition are investigated at daily, monthly and inter-annual scale, and for the different types of precipitation. Water stable isotopes are more closely related to 2m air temperature than to inversion temperature at all timescales (e.g. R-2 = 03 and 0.44, respectively for daily values). The slope of the temporal relationship between daily delta O-18 and 2m air temperature is approximately 2 times smaller (0.49 parts per thousand degrees C-1) than the average Antarctic spatial (0.8 parts per thousand degrees C-1) relationship initially used for the interpretation of EPICA Dome C records. In accordance with results from precipitation monitoring at Vostok and Dome F, deuterium excess is anticorrelated with delta O-18 at daily and monthly scales, reaching maximum values in winter. Hoar frost precipitation samples have a specific fingerprint with more depleted delta O-18 (about 5% below average) and higher deuterium excess (about 8% above average) values than other precipitation types. These datasets provide a basis for comparison with shallow ice core records, to investigate post-deposition effects. A preliminary comparison between observations and precipitation from the European Centre for Medium-RangeWeather Forecasts (ECMWF) reanalysis and the simulated water stable isotopes from the Laboratoire de Meteorologie Dynamique Zoom atmospheric general circulation model (LMDZiso) shows that models do correctly capture the amount of precipitation as well as more than 50% of the variance of the observed delta O-18, driven by large-scale weather patterns. Despite a warm bias and an underestimation of the variance in water stable isotopes, LMDZiso correctly captures these relationships between delta O-18, 2m air temperature and deuterium excess. Our dataset is therefore available for further in-depth model evaluation at the synoptic scale
Shortwave and longwave components of the surface radiation budget measured at the Thule High Arctic Atmospheric Observatory, Northern Greenland
The Arctic climate is influenced by the interaction of shortwave (SW) and longwave (LW) radiation with the atmosphere and the surface. The comprehensive evolution of the Surface Radiative Fluxes (SRF) on different time scales is of paramount importance to understanding the complex mechanisms governing the Arctic climate. However, only a few sites located in the Arctic region provide long-term time series of SRF allowing for capturing of the seasonality of atmospheric and surface parameters and for carrying out validation of satellite products and/or reanalyses.
This paper presents the daily and monthly SRF record collected at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5∘ N, 68.8∘ W), in North-Western Greenland. The downwelling components of the SW (DSI) and the LW (DLI) irradiances have been measured at THAAO since 2009, whereas the collection of the upwelling SW (USI) and LW (ULI) irradiance was started in 2016, together with additional measurements, such as meteorological parameters and column water vapour. The datasets of DSI (Meloni et al., 2022a; https://doi.org/10.13127/thaao/dsi), USI (Meloni et al., 2022b; https://doi.org/10.13127/thaao/usi), DLI (Meloni et al., 2022c; https://doi.org/10.13127/thaao/dli), ULI (Meloni et al., 2022d; https://doi.org/10.13127/thaao/uli), and near-surface air temperature (Muscari et al., 2018; https://doi.org/10.13127/thaao/met), can be accessed through the THAAO web site (https://www.thuleatmos-it.it/data, last access: 16 January 2024).
The DSI is absent (solar zenith angle ≥90∘) from 29 October to 13 February, assuming maxima in June (monthly mean of 277.0 Wm−2), when it is about half of the total incoming irradiance. The USI maximum occurs in May (132.4 Wm−2) owing to the combination of moderately high DSI values and high albedo. The shortwave surface albedo (A) assumes an average of 0.16 during summer, when the surface is free of snow. Differently, during months of snow-covered surface, when solar radiation allows A to be estimated, its values are greater than 0.6. A large interannual variability is observed in May and September, months characterized by rapidly changing surface conditions, having a link with air temperature anomalies.
The DLI and ULI maxima occur in July and August, and the minima in February and March. ULI is always larger than DLI and shows a wider annual cycle. ULI is well described by a fourth-order polynomial fit to the air temperature (R2>0.99 for monthly data and R2>0.97 for daily data).
The Surface Radiation Budget (SRB) is positive from April to August, when absorption of solar radiation exceeds the infrared net cooling, with a maximum value of 153.2 Wm−2 in June. From November to February, during the polar night, the LW net flux varies between −34.5 and −43.0 Wm−2. In March and September, the negative LW net flux overcomes the positive SW contribution, producing a negative SRB.
The THAAO measurements show clear evidence of the influence of several regional weather/climate events, that appear strongly linked with SRF anomalies. These anomalies were found, for example, during summer 2012, when a large ice melting event took place over Greenland, and during winter 2019–2020, which was extraordinarily cold in the Arctic region.</p