576 research outputs found

    The Guiana Shield rainforests-overlooked guardians of South American climate

    Get PDF
    This is the final version. Available from IOP Publishing via the DOI in this record. Tropical forests are global climate regulators through their interaction with hydrological and biogeochemical cycles. Despite extensive research on deforestation in South America and its global impact, the role of the largely intact Guiana Shield forests, north of the Amazon, has not yet been considered as part of this climate system. We use a regional climate model with a realistic deforestation scenario to test the impact of deforestation in the Guiana Shield on climate throughout South America. We show that replacing ∼28% of the current Guiana Shield rainforest with savannah leads to multi-scale impacts across South America, through vegetation-land-atmosphere interactions that disrupt the initial phase of two major 'atmospheric rivers': the Caribbean low-level Jet and the South American low-level jet (SALLJ). Our climate simulations suggest that following deforestation, locally, precipitation and runoff would more than double in lowland forests, whilst mean annual temperatures would increase by up to 2.2◦C in savannahs. Regionally, significant wetting is simulated in northern South America (April−September) and the western Amazon (October-March), while temperatures increase up to 2◦C in central and eastern Amazon, causing more dry months in up to 64% of the Amazon basin. Reduction of moisture transfer by the SALLJ of 2.2% of total annual flow causes noticeable and highly diverse spatial changes in simulated monthly rainfall in la plata basin (LPB). These results highlight the potential consequences of land cover change in a sensitive hot-spot with hydro-climatic impacts 1000 km west and 4000 km south. Such multi-scale perturbations can severely impact biodiversity and ecosystem services across South America, including agriculture in LPB. Recognition of the far field effects of localised deforestation in key areas is urgently needed to improve development plans for a sustainable future.Newcastle University Institute for SustainabilityRoyal Societ

    Biological decolorization of xanthene dyes by anaerobic granular biomass

    Get PDF
    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes—Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L−1, while the process rates were independent of the biomass concentration above 1.89 g VSS L−1. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L−1 AC0). Using different modified AC samples (from the treatment of AC0), a threefold higher rate was obtained with the most basic one, \textAC\textH2ACH2, as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na2S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.This work was supported by the PTDC/AMB/69335/2006 project grants (Fundacao para a Ciencia e Technologia, FCT, Portugal), BRAIN project (ID 6681, European Social Found and Romanian Government and the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0559, Contract 265/2011

    Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance

    Get PDF
    Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus

    The role of African universities in handling climate change

    Get PDF
    Background: African countries are among the most vulnerable and affected by climate change. Comprehending climate change poses a major hurdle for the African population, politicians, and the African Union alike, presenting a substantial challenge for all involved. It is generally accepted that universities and other higher education institutions must play a leading role as drivers of change. Therefore, it is very important that African universities educate students about both mitigation and adaptation measures, develop the necessary initiatives to foster research in climate change-related topics and promote cooperation and alliances with key stakeholders. Results: This research reports on a study aimed at identifying the extent to which higher education institutions in Africa are engaging in efforts to deal with the challenges posed by climate change. The objectives were accomplished through a mixed method approach, incorporating a review of literature, an international survey, and the inclusion of selected case studies from African universities that have developed successful initiatives. The research has brought to light significant disparities, such as varying perceptions regarding the potential outcomes of climate change and its associated extreme events in African countries. In addition, the study highlighted areas where there is a notable consensus on specific issues. It also offers a comprehensive view of the different strategies that universities are implementing to contribute to climate change mitigation and adaptation in several areas. Although there is a growing interest in the need to contribute to the joint task of mitigating the effects of climate change and adapting to its consequences, HEIs need to increase their efforts to enhance the work of their professors and researchers. To this end, the involvement of public authorities and other private sector actors is essential. Conclusions: This article outlines some actions that need to be undertaken so that universities may play a more active role in global efforts to handle the problems associated with a changing climate. There is a notable focus from academic actors on addressing climate change challenges in Africa. In addition, there is a proactive emphasis on utilizing science and research to comprehend climate change issues and offer widely applicable tools for adaptation and mitigation to safeguard both people and the environment. Consequently, it is crucial and time-sensitive for African universities to enhance their expertise in the field of climate change, fostering the capacity to conduct innovative research that addresses the various challenges linked to the evolving climate. This study offers several useful lessons for African universities to replicate experiences that have generated results in different countries and contexts

    OR-Benchmark: An Open and Reconfigurable Digital Watermarking Benchmarking Framework

    Get PDF
    Benchmarking digital watermarking algorithms is not an easy task because different applications of digital watermarking often have very different sets of requirements and trade-offs between conflicting requirements. While there have been some general-purpose digital watermarking benchmarking systems available, they normally do not support complicated benchmarking tasks and cannot be easily reconfigured to work with different watermarking algorithms and testing conditions. In this paper, we propose OR-Benchmark, an open and highly reconfigurable general-purpose digital watermarking benchmarking framework, which has the following two key features: 1) all the interfaces are public and general enough to support all watermarking applications and benchmarking tasks we can think of; 2) end users can easily extend the functionalities and freely configure what watermarking algorithms are tested, what system components are used, how the benchmarking process runs, and what results should be produced. We implemented a prototype of this framework as a MATLAB software package and demonstrate how it can be used in three typical use cases. The first two use cases show how easily we can define benchmarking profiles for some robust image watermarking algorithms. The third use case shows how OR-Benchmark can be configured to benchmark some image watermarking algorithms for content authentication and self-restoration, which cannot be easily supported by other digital watermarking benchmarking systems

    Mouse Cofactor of BRCA1 (Cobra1) Is Required for Early Embryogenesis

    Get PDF
    Negative elongation factor (NELF) is a four-subunit protein complex conserved from Drosophila to humans. In vitro biochemical and tissue culture-based studies have demonstrated an important role of NELF in controlling RNA polymerase II (Pol II) pausing in transcription. However, the physiological significance of NELF function is not clear due to the lack of any genetic systems for studying NELF.Here we show that disruption of the mouse B subunit of NELF (NELF-B), also known as cofactor of BRCA1 (Cobra1), causes inner cell mass (ICM) deficiency and embryonic lethality at the time of implantation. Consistent with the phenotype of the Cobra1 knockout (KO) embryos, knockdown of Cobra1 in mouse embryonic stem cells (ESCs) reduces the efficiency of colony formation and increases spontaneous differentiation. Cobra1-depleted ESCs maintain normal levels of Oct4, Nanog, and Sox2, master regulators of pluripotency in ESCs. However, knockdown of Cobra1 leads to precocious expression of developmental regulators including lymphoid enhancer-binding factor 1 (Lef1). Chromatin immunoprecipitation (ChIP) indicates that Cobra1 binds to the Lef1 promoter and modulates the abundance of promoter-bound RNA polymerase.Cobra1 is essential for early embryogenesis. Our findings also indicate that Cobra1 helps maintain the undifferentiated state of mESCs by preventing unscheduled expression of developmental genes
    • …
    corecore