1,346 research outputs found

    Clinical characteristics of different histologic types of breast cancer

    Get PDF
    Breast cancer is a heterogeneous disease, though little is known about some of its rarer forms, including certain histologic types. Using Surveillance, Epidemiology, and End Results Program data on 135 157 invasive breast cancer cases diagnosed from 1992 to 2001, relationships between nine histologic types of breast cancer and various tumour characteristics were assessed. Among women aged 50–89 years at diagnosis, lobular and ductal/lobular carcinoma cases were more likely to be diagnosed with stage III/IV, ⩾5.0 cm, and node-positive tumours compared to ductal carcinoma cases. Mucinous, comedo, tubular, and medullary carcinomas were less likely to present at an advanced stage. Lobular, ductal/lobular, mucinous, tubular, and papillary carcinomas were less likely, and comedo, medullary, and inflammatory carcinomas were more likely to be oestrogen receptor (ER) negative/progesterone receptor (PR) negative and high grade (notably, 68.2% of medullary carcinomas were ER−/PR− vs 19.3% of ductal carcinomas). In general, similar differences were observed among women diagnosed at age 30–49 years. Inflammatory carcinomas are associated with more aggressive tumour phenotypes, and mucinous, tubular, and papillary tumours are associated with less aggressive phenotypes. The histologic types of breast cancer studied here differ greatly in their clinical presentations, and the differences in their hormone receptor profiles and grades point to their likely different aetiologies

    Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite-Difference Scheme

    Full text link
    We discuss the numerical solution of nonlinear parabolic partial differential equations, exhibiting finite speed of propagation, via a strongly implicit finite-difference scheme with formal truncation error O[(Δx)2+(Δt)2]\mathcal{O}\left[(\Delta x)^2 + (\Delta t)^2 \right]. Our application of interest is the spreading of viscous gravity currents in the study of which these type of differential equations arise. Viscous gravity currents are low Reynolds number (viscous forces dominate inertial forces) flow phenomena in which a dense, viscous fluid displaces a lighter (usually immiscible) fluid. The fluids may be confined by the sidewalls of a channel or propagate in an unconfined two-dimensional (or axisymmetric three-dimensional) geometry. Under the lubrication approximation, the mathematical description of the spreading of these fluids reduces to solving the so-called thin-film equation for the current's shape h(x,t)h(x,t). To solve such nonlinear parabolic equations we propose a finite-difference scheme based on the Crank--Nicolson idea. We implement the scheme for problems involving a single spatial coordinate (i.e., two-dimensional, axisymmetric or spherically-symmetric three-dimensional currents) on an equispaced but staggered grid. We benchmark the scheme against analytical solutions and highlight its strong numerical stability by specifically considering the spreading of non-Newtonian power-law fluids in a variable-width confined channel-like geometry (a "Hele-Shaw cell") subject to a given mass conservation/balance constraint. We show that this constraint can be implemented by re-expressing it as nonlinear flux boundary conditions on the domain's endpoints. Then, we show numerically that the scheme achieves its full second-order accuracy in space and time. We also highlight through numerical simulations how the proposed scheme accurately respects the mass conservation/balance constraint.Comment: 36 pages, 9 figures, Springer book class; v2 includes improvements and corrections; to appear as a contribution in "Applied Wave Mathematics II

    Menopausal hormone therapy and other breast cancer risk factors in relation to the risk of different histological subtypes of breast cancer: a case-control study

    Get PDF
    INTRODUCTION: Breast cancers of different histology have different clinical and prognostic features. There are also indications of differences in aetiology. We therefore evaluated the risk of the three most common histological subtypes in relation to menopausal hormone therapy and other breast cancer risk factors. METHODS: We used a population-based case-control study of breast cancer to evaluate menopausal hormone therapy and other breast cancer risk factors for risk by histological subtype. Women aged 50 to 74 years, diagnosed with invasive ductal (n = 1,888), lobular (n = 308) or tubular (n = 93) breast cancer in Sweden in 1993 to 1995 were compared with 3,065 age-frequency matched controls randomly selected from the population. Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for ductal, lobular, and tubular cancer. RESULTS: Women who had used medium potency estrogen alone were at increased risks of both ductal and lobular cancer. Medium potency estrogen-progestin was associated with increased risks for all subtypes, but the estimates for lobular and tubular cancer were higher compared with ductal cancer. We found OR 5.6 (95% CI 3.2–9.7) for lobular cancer, OR 6.5 (95% CI 2.8–14.9) for tubular cancer and OR 2.3 (95% CI 1.6–3.3) for ductal cancer with ≥5 years use of medium potency estrogen-progestin therapy. Low potency oral estrogen (mainly estriol) appeared to be associated with an increased risk for lobular cancer, but the association was strongest for short-term use. Reproductive and anthropometric factors, smoking, and past use of oral contraceptives were mostly similarly related to the risks of the three breast cancer subtypes. Recent alcohol consumption of > 10 g alcohol/day was associated with increased risk only for tubular cancer (OR 3.1, 95% CI 1.4–6.8). CONCLUSION: Menopausal hormone therapy was associated with increased risks for breast cancer of both ductal and lobular subtype, and medium potency estrogen-progestin therapy was more strongly associated with lobular compared with ductal cancer. We also found medium potency estrogen-progestin therapy and alcohol to be strongly associated with tubular cancer. With some exceptions, most other risk factors seemed to be similarly associated with the three subtypes of breast cancer

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    92-Gene Molecular Profiling in Identification of Cancer Origin: A Retrospective Study in Chinese Population and Performance within Different Subgroups

    Get PDF
    BACKGROUND: After cancer diagnosis, therapy for the patient is largely dependent on the tumor origin, especially when a metastatic tumor is being treated. However, cases such as untypical metastasis, poorly differentiated tumors or even a limited number of tumor cells may lead to challenges in identifying the origin. Moreover, approximately 3% to 5% of total solid tumor patients will not have to have their tumor origin identified in their lifetime. The THEROS CancerTYPE ID® is designed for identifying the tumor origin with an objective, rapid and standardized procedure. METHODOLOGY AND PRINCIPAL FINDINGS: This is a blinded retrospective study to evaluate performance of the THEROS CancerTYPE ID® in a Chinese population. In total, 184 formalin-fixed paraffin-embedded (FFPE) samples of 23 tumor origins were collected from the tissue bank of Fudan University Shanghai Cancer Center (FDUSCC). A standard tumor cell enrichment process was used, and the prediction results were compared with reference diagnosis, which was confirmed by two experienced pathologists at FDUSCC. All of the 184 samples were successfully analyzed, and no tumor specimens were excluded because of sample quality issues. In total, 151 samples were correctly predicted. The agreement rate was 82.1%. A Pearson Chi-square test shows that there is no difference between this study and the previous evaluation test performed by bioTheranostics Inc. No statistically significant decrease was observed in either the metastasis group or tumors with high grades. CONCLUSIONS: A comparable result with previous work was obtained. Specifically, specimens with a high probability score (>0.85) have a high chance (agreement rate = 95%) of being correctly predicted. No performance difference was observed between primary and metastatic specimens, and no difference was observed among three tumor grades. The use of laser capture micro-dissection (LCM) makes the THEROS CancerTYPE ID® accessible to almost all of the cancer patients with different tumor statuses

    Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period

    Get PDF
    From June 2004 to December 2007, samples were weekly collected at a fixed station located at the mouth of Ria de Aveiro (West Iberian Margin). We examined the seasonal and inter-annual fluctuations in composition and community structure of the phytoplankton in relation to the main environmental drivers and assessed the influence of the oceano-graphic regime, namely changes in frequency and intensity of upwelling events, over the dynamics of the phytoplankton assemblage. The samples were consistently handled and a final subset of 136 OTUs (taxa with relative abundance > 0.01%) was subsequently submitted to various multivariate analyses. The phytoplankton assemblage showed significant changes at all temporal scales but with an overriding importance of seasonality over longer-(inter-annual) or shorter-term fluctuations (upwelling-related). Sea-surface temperature, salinity and maximum upwelling index were retrieved as the main driver of seasonal change. Seasonal signal was most evident in the fluctuations of chlorophyll a concentration and in the high turnover from the winter to spring phytoplankton assemblage. The seasonal cycle of production and succession was disturbed by upwelling events known to disrupt thermal stratification and induce changes in the phytoplankton assemblage. Our results indicate that both the frequency and intensity of physical forcing were important drivers of such variability, but the outcome in terms of species composition was highly dependent on the available local pool of species and the timing of those events in relation to the seasonal cycle. We conclude that duration, frequency and intensity of upwelling events, which vary seasonally and inter-annually, are paramount for maintaining long-term phytoplankton diversity likely by allowing unstable coexistence and incorporating species turnover at different scales. Our results contribute to the understanding of the complex mechanisms of coastal phytoplankton dynamics in relation to changing physical forcing which is fundamental to improve predictability of future prospects under climate change.Portuguese Foundation for Science and Technology (FCT, Portugal) [SFRH/BPD/ 94562/2013]; FEDER funds; national funds; CESAM [UID/AMB/50017]; FCT/MEC through national funds; FEDERinfo:eu-repo/semantics/publishedVersio
    corecore