1,286 research outputs found
Auxiliary Fields for Super Yang-Mills from Division Algebras
Division algebras are used to explain the existence and symmetries of various
sets of auxiliary fields for super Yang-Mills in dimensions .
(Contribution to G\"ursey Memorial Conference I: Strings and Symmetries)Comment: 7 pages, plain TeX, CERN-TH.7470/9
Data-based decision making: Teachers’ comprehension of Curriculum-Based Measurement progress-monitoring graphs
Teaching and Teacher Learning (ICLON
Racial differences in user experiences and perceived value of electronic symptom monitoring in a cohort of black and white bladder and prostate cancer patients
Purpose: Electronic patient-reported outcomes (ePROs) are increasingly being used for symptom monitoring during routine cancer care, but have rarely been evaluated in diverse patient populations. We assessed ePRO user experiences and perceived value among Black and White cancer patients. Methods: We recruited 30 Black and 49 White bladder and prostate cancer patients from a single institution. Participants reported symptoms using either a web-based or automated telephone interface over 3 months and completed satisfaction surveys and qualitative interviews focused on user experiences and value. Using a narrative mixed methods approach, we evaluated overall and race-specific differences in ePRO user experiences and perceived value. Results: Most participants selected the web-based system, but Blacks were more likely to use the automated telephone-based system than Whites. In satisfaction surveys, Whites more commonly reported ease in understanding and reporting symptoms compared with Blacks. Blacks more often reported that the ePRO system was helpful in facilitating symptom-related discussions with clinicians. During interviews, Blacks described how the ePRO helped them recognize symptoms, while Whites found value in better understanding and tracking symptoms longitudinally. Blacks also expressed preferences for paper-based ePRO options due to perceived ease in better understanding of symptom items. Conclusion: Electronic patient-reported outcomes are perceived as valuable for variable reasons by Black and White cancer populations, with greater perceived value for communicating with clinicians reported among Blacks. To optimize equitable uptake of ePROs, oncology practices should offer several ePRO options (e.g., web-based, phone-based), as well as paper-based options, and consider the e-health literacy needs of patients during implementation
Partial wave analysiss of pbar-p -> piminus-piplus, pizero-pizero, eta-eta and eta-etaprime
A partial wave analysis is presented of Crystal Barrel data on pbar-p ->
pizero-pizero, eta-eta and eta-etaprime from 600 to 1940 MeV/c, combined with
earlier data on d\sigma /d\Omega and P for pbar-p->piminus-piplus. The
following s-channel I=0 resonances are identified: (i) J^{PC} = 5^{--} with
mass and width (M,\Gamma) at (2295+-30,235^{+65}_{-40}) MeV, (ii) J^{PC} =
4^{++} at (2020+-12, 170+-15) MeV and (2300+-25, 270+-50) MeV, (iii) 3D3 JPC =
3^{--} at (1960+-15, 150+-25) MeV and (2210+-4$, 360+-55) MeV, and a 3G3 state
at (2300 ^{+50}_{-80}, 340+-150) MeV, (iv) JPC = 2^{++} at (1910+-30, 260+-40)
MeV, (2020+-30, 275+-35) MeV, (2230+-30, 245+-45) MeV, and (2300+-35, 290+-50)
MeV, (v) JPC = 1^{--} at (2005+-40, 275+-75) MeV, and (2165+-40, 160
^{+140}_{-70}) MeV, and (vi) JPC = 0^{++} at (2005+-30, 305+-50) MeV,
(2105+-15, 200+-25) MeV, and (2320+-30, 175+-45) MeV. In addition, there is a
less well defined 6^{++} resonance at 2485+-40 MeV, with Gamma = 410+-90 MeV.
For every JP, almost all these resonances lie on well defined linear
trajectories of mass squared v. excitation number. The slope is 1.10+-0.03
Gev^2 per excitation. The f_0(2105) has strong coupling to eta-\eta, but much
weaker coupling to pizero-pizero. Its flavour mixing angle between q-qbar and
s-sbar is (59-71.6)deg, i.e. dominant decays to s-sbar. Such decays and its
strong production in pbar-p interactions strongly suggest exotic character.Comment: Makes available the combined fit to Crystal Barrel data on pbar-p ->
2-body final states. 29 pages, 11 figures. Typo corrected in version
Effects of momentum conservation on the analysis of anisotropic flow
We present a general method for taking into account correlations due to
momentum conservation in the analysis of anisotropic flow, either by using the
two-particle correlation method or the standard flow vector method. In the
latter, the correlation between the particle and the flow vector is either
corrected through a redefinition (shift) of the flow vector, or subtracted
explicitly from the observed flow coefficient. In addition, momentum
conservation contributes to the reaction plane resolution. Momentum
conservation mostly affects the first harmonic in azimuthal distributions,
i.e., directed flow. It also modifies higher harmonics, for instance elliptic
flow, when they are measured with respect to a first harmonic event plane such
as one determined with the standard transverse momentum method. Our method is
illustrated by application to NA49 data on pion directed flow.Comment: RevTeX 4, 10 pages, 1 eps figure. Version accepted for publication in
Phys Rev
Flavour SU(3) Symmetry in Charmless B Decays
QCD sum rules are used to estimate the flavour SU(3)-symmetry violation in
two-body B decays to pions and kaons. In the factorizable amplitudes the
SU(3)-violation manifests itself in the ratio of the decay constants f_K/f_pi
and in the differences between the B->K, B_s->K and B->pi form factors. These
effects are calculated from the QCD two-point and light-cone sum rules,
respectively, in terms of the strange quark mass and the ratio of the strange
and nonstrange quark-condensate densities. Importantly, QCD sum rules predict
that SU(3) breaking in the heavy-to-light form factors can be substantial and
does not vanish in the heavy-quark mass limit. Furthermore, we investigate the
strange-quark mass dependence of nonfactorizable effects in the B->K pi decay
amplitudes. Taking into account these effects we estimate the accuracy of
several SU(3)-symmetry relations between charmless B-decay amplitudes.Comment: Two references added, version to be published in Phys.Rev.D, 21
pages, 12 postscript figure
Subgraphs in random networks
Understanding the subgraph distribution in random networks is important for
modelling complex systems. In classic Erdos networks, which exhibit a
Poissonian degree distribution, the number of appearances of a subgraph G with
n nodes and g edges scales with network size as \mean{G} ~ N^{n-g}. However,
many natural networks have a non-Poissonian degree distribution. Here we
present approximate equations for the average number of subgraphs in an
ensemble of random sparse directed networks, characterized by an arbitrary
degree sequence. We find new scaling rules for the commonly occurring case of
directed scale-free networks, in which the outgoing degree distribution scales
as P(k) ~ k^{-\gamma}. Considering the power exponent of the degree
distribution, \gamma, as a control parameter, we show that random networks
exhibit transitions between three regimes. In each regime the subgraph number
of appearances follows a different scaling law, \mean{G} ~ N^{\alpha}, where
\alpha=n-g+s-1 for \gamma<2, \alpha=n-g+s+1-\gamma for 2<\gamma<\gamma_c, and
\alpha=n-g for \gamma>\gamma_c, s is the maximal outdegree in the subgraph, and
\gamma_c=s+1. We find that certain subgraphs appear much more frequently than
in Erdos networks. These results are in very good agreement with numerical
simulations. This has implications for detecting network motifs, subgraphs that
occur in natural networks significantly more than in their randomized
counterparts.Comment: 8 pages, 5 figure
Computational Modelling of Tissue-Engineered Cartilage Constructs
Cartilage is a fundamental tissue to ensure proper motion between bones and damping of mechanical loads. This tissue often suffers damage and has limited healing capacity due to its avascularity. In order to replace surgery and replacement of joints by metal implants, tissue engineered cartilage is seen as an attractive alternative. These tissues are obtained by seeding chondrocytes or mesenchymal stem cells in scaffolds and are given certain stimuli to improve establishment of mechanical properties similar to the native cartilage. However, tissues with ideal mechanical properties were not obtained yet. Computational models of tissue engineered cartilage growth and remodelling are invaluable to interpret and predict the effects of experimental designs. The current model contribution in the field will be presented in this chapter, with a focus on the response to mechanical stimulation, and the development of fully coupled modelling approaches incorporating simultaneously solute transport and uptake, cell growth, production of extracellular matrix and remodelling of mechanical properties.publishe
- …