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Teachers have difficulty using data from Curriculum-based Measurement (CBM) progress
graphs of students with learning difficulties for instructional decision-making. As a first step
in unraveling those difficulties, we studied teachers’ comprehension of CBM graphs. Using
think-aloud methodology, we examined 23 teachers’ ability to read, interpret, and link CBM
data to instruction for fictitious graphs and their own students’ graphs. Additionally, we
examined whether graph literacy—measured with a self-report question and graph-reading
skills test—affected graph comprehension. To provide a framework for understanding teachers’
graph comprehension, we also collected data from “gold-standard” experts. Results revealed
that teachers were reasonably proficient at reading the data, but had more difficulty with
interpreting and linking the data to instruction. Graph literacy was related to some but not all
aspects of teachers’ CBM graph-comprehension ability. Implications for training teachers to
comprehend and use CBM progress data for decision-making are discussed.

Teachers are problem solvers. They are confronted each day
with solving the problem of how best to help children learn.
Teachers of students with learning difficulties face special
challenges in their problem solving efforts. First, students
with learning difficulties may not respond to the type of
instructional approaches found to be effective for other stu-
dents. Second, students with learning difficulties may im-
prove at slow, incremental rates, yet instructional time is lim-
ited. Teachers cannot afford to waste precious educational
time on interventions that are ineffective. To be successful
problem solvers, teachers of students with learning difficul-
ties must be relentless in their instruction. They must teach
their students with a sense of urgency, striving to build in-
creasingly effective instructional programs (Zigmond, 1997,
2003).

One important tool for building effective instructional
programs for students with learning difficulties is a database
of effective instructional interventions (e.g., What Works
Clearinghouse, see http://ies.ed.gov/ncee/wwc/). Yet, stu-
dents respond differentially to interventions—even to those
with an empirical evidence base (Deno, 1985; Deno & Fuchs,
1987). Therefore, teachers must have a second tool available,
one that allows them to collect data on the effectiveness of
interventions for individual students. Furthermore, teachers
must have the skills needed to use the data generated by such
a tool to inform their instruction. One such assessment tool
that teachers can use to evaluate the effects of instructional
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programs on student progress is Curriculum-based Measure-
ment (CBM; Deno, 1985).

Curriculum-Based Measurement

CBM is a progress-monitoring system designed to track the
progress of individual students with learning difficulties, and
to evaluate the effectiveness of instruction for those students
(Deno, 1985, 2003). CBM involves frequent (e.g., weekly)
administration of short, simple measures that sample
performance in an academic area such as reading. Scores
from the measures are placed on a graph that depicts student
performance and progress over time. Key components of a
CBM progress-monitoring graph include: (1) baseline data,
representing the student’s current level of performance; (2)
peer data, representing typical performance and reflecting
the discrepancy between the student and peers; (3) a goal
line, representing the expected rate of growth and end-of-
year level of performance; (4) data points, representing the
number of correct and incorrect responses on weekly probes;
(5) slope or growth lines, representing the student’s rate of
growth over time; and (6) solid vertical lines, representing
instructional changes (see Figure 1 for a sample CBM graph).

In order to evaluate the effectiveness of instruction for a
particular student, the teacher examines the graph to deter-
mine whether the student is progressing at the desired rate
of growth and whether the student will achieve the goal. If
growth is greater than expected, the teacher raises the goal.
If growth is less than expected, the teacher changes instruc-
tion and then continues to monitor to examine the effects
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FIGURE 1 Sample of a standard CBM graph. Graphs were presented to participants in Dutch. Numbers were added to this sample graph for illustrative
purposes: (1) = baseline data, (2) = peer data, (3) = goal line, (4) = data points, (5) = slope or growth line, and (6) = solid vertical line.

of the change. By responding to student data with goal or
instructional changes, the teacher strives to build a powerful,
effective instructional program for the student.

A large body of research has addressed the development
of CBM measures and procedures in areas such as math,
writing, and reading (see Foegen, Jiban, & Deno, 2007; Mc-
Master & Espin, 2007; Wayman, Wallace, Wiley, Tichá, &
Espin, 2007, for reviews), and demonstrates that when teach-
ers use CBM to inform their instruction, student achievement
improves (Stecker, Fuchs, & Fuchs, 2005). However, this re-
search also reveals that teachers often do not use CBM to
inform their instruction; that is, teachers collect and graph
the data, but do not respond to the data with goal or instruc-
tional changes. To address this concern, Fuchs, Fuchs and
colleagues developed approaches for, and investigated the
effects of, computer-assisted feedback on CBM data-based
decision-making (see Fuchs & Fuchs, 2002; Stecker et al.,
2005, for reviews). They did not, however, examine teachers’
understanding or interpretation of CBM progress graphs.

Graph Comprehension

The first step in CBM data-based decision-making is to
interpret the progress graph—that is, to determine whether
the graph signals the need for a goal or instructional change.
At first glance, CBM graphs seem easy to interpret. After
all, the graphs are designed to be simple, clear, and easy to
understand (Deno, 1985, 2003); however, research suggests
that graph interpretation is not necessarily simple. For

example, Kratochwill, Levin, Horner, and Swoboda (2014)
reviewed the research on the interpretation of single-subject
design graphs, many of which were “simple” A-B designs,
and concluded that it was difficult for viewers to reliably vi-
sually analyze the graphs in order to determine intervention
effectiveness. Difficulties with graph interpretation are not
unique to education, or to special education. Research on
graph reading in general demonstrates that graph reading is a
fairly complex process, and that people easily make mistakes
when reading and interpreting graphs (see Friel, Curcio,
& Bright, 2001; Glazer, 2011; Shah & Hoeffner, 2002, for
reviews).

A term often used in the graph-reading literature to de-
scribe people’s ability to read and interpret graphs is graph
comprehension (Friel et al., 2001). Graph comprehension is
defined as a viewer’s ability to derive meaning from a graph,
and includes three key components: (1) the ability to extract
the data from the graph—that is, to read the data at a surface
level; (2) the ability to integrate and interpret the graphed
data—that is, to see the relation between the various data
components presented on the graph; and (3) the ability to
evaluate the data and interpret it within a given context—
that is, to make inferences from the data and link the data to
“real life” (see Friel et al., 2001, for a review). Curcio (1981)
and Friel et al. (2001) refer to these three components of
graph comprehension as reading the data, reading between
the data, and reading beyond the data, and argue that the
components are hierarchical in nature, with reading the data
being the simplest, and reading beyond the data the most
complex skill.
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Curcio’s (1981) and Friel et al.’s (2001) framework of-
ten has been used in graph-comprehension research (e.g.,
Boote, 2014; Galesic & Garcia-Retamero, 2011; Kim, Lom-
bardino, Cowles, & Altmann, 2014). Applying this frame-
work to CBM, comprehension of CBM progress graphs can
be conceptualized as the ability to (1) read the data—that
is, describe the scores and growth/slope lines on the graph
(e.g., “At week 5 the student had a score of 20 correct maze
choices,” or “The slope line for phase 3 increased at a rate of
.25 choices per week”); (2) read between the data—that is,
interpret the relations between various data components such
as the slope and goal lines (e.g., “The slope line is less steep
than the goal line, so growth is less than expected”); and (3)
read beyond the data—that is, link the data to the instructional
context (e.g., “The student is not growing at the expected rate,
thus a change in instruction is needed”). We make use of Cu-
rio’s and Friel et al.’s framework for our research on CBM
graph-comprehension; however, rather than use the generic
terms of reading, reading between, and reading beyond the
data, we use terms specific to CBM graph-reading, namely
reading, interpreting, and linking CBM data to instruction.

Factors Influencing Graph Comprehension

One consistent finding to emerge from the graph-
comprehension research is that general graph-literacy can
affect the viewer’s comprehension of a particular graph
(e.g., Glazer, 2011). Graph literacy refers to the viewer’s
knowledge about graphs (Shah & Hoeffner, 2002). For
example, Xi (2010) found that viewers who were more
familiar with graphs (i.e., had a higher level of graph
literacy) described line graphs in a more organized fashion,
and were more complete, accurate, and sophisticated in their
graph descriptions, than viewers who were less familiar
with graphs. In this study, we examine the role of general
graph-literacy in teachers’ comprehension of CBM graphs.
We measure graph literacy via both self-report and a
graph-reading skills test, approaches that have been used
in other studies of graph comprehension (e.g., Galesic &
Garcia-Retamero, 2011; Xi, 2010).

A second factor that has been found to influence graph
comprehension is content knowledge (e.g., Friel et al., 2001;
Glazer, 2011). Content knowledge refers to the viewer’s
background knowledge about the information being graphed
(Friel et al., 2001). For example, Shah (2002) found that
when viewers were more familiar with the graph content (of
line graphs), they were more likely to extract information on
trends in the data than when they were less familiar with the
graph content.

The effects of content knowledge often have been studied
by comparing the graph comprehension of participants with
more or less content knowledge (experts versus non-experts;
see Freedman & Shah, 2002, for examples of such stud-
ies). With regard to CBM, defining “content” knowledge is
somewhat of a challenge because content knowledge might
be defined as general knowledge about education, general
knowledge about educational progress-monitoring, specific
knowledge about CBM progress-monitoring, or knowledge
related to the individual student being monitored.

In this study, we examine the influence of various sources
of content knowledge on CBM graph-comprehension in two
ways. First, using standard (researcher-made) CBM graphs,
we compare teachers’ graph comprehension to that of three
groups of experts: general graph-reading experts, education
graph-reading experts, and CBM graph-reading experts. Sec-
ond, to examine the influence of knowledge related to the
individual student being monitored, we compare teachers’
comprehension of standard (researcher-made) graphs to their
comprehension of student graphs from two students with
reading difficulties from their own class.

What Should Be Expected of Teachers?

One challenge we faced in conducting this research was
knowing what to expect from the teachers with regard
to CBM graph-comprehension. Research on CBM graph-
comprehension is fairly new, and thus there were few stan-
dards against which to compare teachers’ performance. In-
cluding data from the experts provided us with a standard
against which to interpret the teachers’ data. This approach
also was taken in a study by Wagner, Hammerschmidt-
Snidarich, Espin, Seifert, and McMaster (this issue), who ex-
amined preservice teachers’ comprehension of CBM graphs,
and compared those data from the preservice teachers to that
of three “gold-standard” CBM experts. Wagner et al. used
the term “gold-standard” to emphasize that data from the ex-
perts set a standard against which to compare data from the
preservice teachers. In this study, we refer to the CBM expert
data reported in Wagner et al. to provide a framework for in-
terpreting the data from our inservice teachers. In addition,
we extend the Wagner et al. study by including additional
variables that were not examined in the original study, and
by including data from general graph-reading experts and
education graph-reading experts.

Purpose of the Study

To summarize, this study is a replication and extension of
Wagner et al.’s (this issue) study on comprehension of CBM
graphs. This study is an exploratory, descriptive study, with
the purpose of examining inservice teachers’ comprehension
of CBM graphs, and exploring the influence of factors that
might affect that comprehension.

To examine CBM graph-comprehension, we employ a
think-aloud strategy, and collect data from teachers on both
standard and student CBM graphs. For the standard graphs,
we also present data from three types of gold-standard ex-
perts. In addition, we examine the relation between teachers’
graph-literacy and CBM graph-comprehension.

METHOD

Participants

Teachers

Teacher participants were 23 Dutch elementary- and
secondary-school teachers (19 female, 4 male; Mage = 42.39,
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SD = 11.91) from 13 general and special education schools
who were recruited via convenience sampling. All partici-
pants had completed a teacher education program and earned
a Bachelor of Education. In addition, 5 teachers had com-
pleted or were completing a university-level Bachelor or
Master of Science program.1

Teachers reported that they had had, on average, 4.65 years
(SD = 1.27, range 2–7 years) of mathematics education dur-
ing their secondary-school education. Five teachers also had
completed one or more (range 1–4) courses in statistics as
part of their post-secondary education. Elementary-school
teacher participants (n = 19) taught at the 5th- and 6th-grade
level, and had on average 16.74 years (SD = 10.31) of teach-
ing experience. Secondary-school teacher participants (n =
4) taught Dutch at the 7th- and 8th-grade level, and had on
average 13.25 years (SD = 9.43) of teaching experience. All
teachers worked with students with reading difficulties in
their classes.

Teachers completed a short background questionnaire to
assess their familiarity and/or experience with progress mon-
itoring in general, and with CBM progress-monitoring in
particular. CBM progress-monitoring is relatively new in
the Netherlands, but the concept of progress-monitoring is
not. At the elementary level, schools are required to moni-
tor the progress of all students in the school. Most schools
use a nationally-normed standardized test to monitor student
progress, and students typically are tested annually or bi-
annually. Both individual and class-wide data are provided to
teachers in the forms of graphs and tables. At the secondary
level, progress monitoring is not required, but schools are
strongly encouraged to do so. A national standardized test is
also available for secondary schools that wish to implement
progress monitoring.

Twenty teachers in our sample reported that their schools
implemented a progress-monitoring system, and 18 of those
teachers reported that they used the data and progress graphs
generated by the system. Those teachers reported that they
used data to examine student progress, to place students
into instructional groups, or to report on student progress
to parents. Only 5 of the 23 teachers reported that they had
ever heard of CBM progress-monitoring—two via Univer-
sity coursework and one via participation in a study in which
teachers collected CBM data from students but did not graph
or use the data. None of the teachers had ever used CBM to
monitor the progress of students in their classes and evaluate
instructional effectiveness.

“Gold-Standard” Graph-Reading Experts

Expert participants were seven “gold-standard” graph-
reading experts (3 female, 4 male). Three types of “gold-
standard” experts were included: General-graph Experts,
Education-graph Experts, and CBM-graph Experts. General-
graph Experts (n = 2, Mage = 35.00) were assistant professors
in Statistics, and were selected because of their training and
experience in reading numerical and statistical graphs. Both
experts had a master’s degree in Psychology and a Ph.D. in
Psychology/Statistics. The General-graph Experts had on av-
erage 10.50 years of experience teaching statistics; one had

taught 6 different statistics courses, and the other 9. Courses
taught by the experts included Introduction to Statistics &
Research Methods, Test Theory & Scale Development, and
Applied Multivariate Data-analysis.

Education-graph Experts (n = 2, Mage = 33.86) were em-
ployees (one full time, the other a consultant) of a company
responsible for the development and use of national stan-
dardized assessments in the Netherlands (similar to the ETS
in the United States). These experts were selected because of
their training and experience in reading educational progress
graphs. Both experts had a master’s degree in Psychology.
One had a Ph.D. in Education and Child Studies, the other a
Ph.D. in Psychology/Statistics. (At the time of the study, this
second expert was also an assistant professor in Education.)
The Education-graph Experts had worked on average 7.50
years for the assessment company, and were responsible for
the development of language and math items and tests. Both
experts had given presentations about interpretation and use
of national standardized assessment data to (future) educa-
tional professionals.

The CBM-graph Experts (n = 3, Mage = 66) were Uni-
versity professors in Special Education, and were selected
because of their training and experience in reading CBM
graphs. All three CBM-graph Experts had Ph.D.’s in Educa-
tional Psychology, and were involved in the original develop-
ment of CBM. They all had at least 100 publications on CBM
and had given more than 50 courses or training workshops
related to CBM, and reported that they had interpreted more
than 100 CBM graphs.

As is clear from the descriptions above, expertise was
established primarily on the basis of background and expe-
rience; however, we also collected data on experts’ graph
literacy. These data are reported at the beginning of the re-
sults section.

Procedures

We employed a think-aloud strategy to collect data on par-
ticipants’ CBM graph-comprehension. Think-aloud data for
the teachers and General-graph and Education-graph Experts
were collected as a part of this study. Think-aloud data for
the CBM-graph Experts had been collected as a part of the
Wagner et al. study (see this issue). We used similar proce-
dures as those used by Wagner et al., with the exception that
we collected eye-movement data from our participants while
they described the graphs. (We report on only the think-aloud
data in this article.)

We extended the Wagner et al. (this issue) study by in-
cluding additional variables on CBM graph-comprehension.
For variables common to both the Wagner et al. study and
this study, we refer to the Wagner et al. data. For variables
unique to this study, we recoded the CBM-graph Experts’
think-aloud data.2

Teachers completed think-alouds for both standard and
student graphs. To create the student graphs, teachers col-
lected weekly progress-monitoring data for two students with
reading difficulties over a period of 10 to 12 weeks. Data were
collected via an online progress-monitoring system that au-
tomatically timed the measures, and scored and graphed the
data.3 The CBM measure used for progress monitoring was
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maze-selection. A maze is a text in which every seventh word
is deleted and replaced by three alternatives. Students read
the text silently for two minutes, selecting words at each dele-
tion point. The number of correct and incorrect choices are
scored and graphed. Scores from the maze have been found
to be reliable and valid indicators of students’ performance
and progress in reading (Espin, Wallace, Lembke, Campbell,
& Long, 2010; Shin, Deno, & Espin, 2000; Wayman et al.,
2007).

After collecting progress data for 10–12 weeks, teach-
ers rated their graph-interpretation experience and com-
pleted a Graph-Reading Skills Test online. Teachers then
completed think-alouds for two standard and two student
CBM graphs. General-graph and Education-graph Experts
rated their graph-interpretation experience, and completed
the Graph-reading Skills Test and then the think-alouds for
the standard graphs. The CBM-graph Experts rated their
graph-interpretation experience and completed the Graph-
reading Skills Test as part of this study.

Think-alouds were conducted on an individual basis. Par-
ticipants were shown a sample CBM graph in reading, were
provided with a description of the graph, and then completed
a think-aloud for each standard CBM graph. The order in
which the graphs were presented was counterbalanced (AB
versus BA). Teachers (only) then completed think-alouds for
their students’ graphs. Prior to completing the think-alouds
for student graphs, teachers were given a short set of in-
structions describing the differences in layout between the
standard and student graphs. Data for the teachers were col-
lected at their school. Data for the experts were collected at
their place of work.

Materials

Standard Graphs

The standard (researcher-made) CBM graphs used in this
study were slightly modified versions of graphs used in the
Wagner et al. study (this issue). For this study, the y-axis rep-
resented scores on maze-selection rather than reading aloud
because teachers were using the maze to collect progress data
from their own students. Although the graphs had a different
scale, the data points and data patterns for the graphs used in
this study and in the Wagner et al. study were the same.

Standard graphs depicted fictitious student progress data
across five phases of instruction across a school year (see
Figure 1 for a sample standard graph). The graphs included
baseline and peer data, a goal line, and, within each phase,
data points and slope lines. The graphs were in black and
white and included a legend defining the graph symbols.
The format of the sample graph, which was used to provide
instructions to participants, was identical to that of the two
standard graphs but the data differed.

Student Graphs

Student graphs were created via the progress-monitoring sys-
tem used to collect progress data. The student graphs had a
different format than that of the standard graphs (see Figure 2

for a sample student graph). Student data were collected
for a period of only 10–12 weeks, thus the graphs depicted
progress for only one instructional phase. In addition, the
graphs did not display peer data, and they were in color.

Measures: Graph Literacy

Participants’ graph literacy was measured via a self-report
question on graph-interpretation experience and a Graph-
reading Skills Test.

Self-Report Question Graph-Interpretation
Experience

Participants were asked to rate their experience with inter-
preting graphs and diagrams on a four-point scale ranging
from very little (1) to very much (4).

Graph-Reading Skills Test

The Graph-reading Skills Test was a revised version of the
Graph Literacy Scale developed by Galesic and Garcia-
Retamero (2011). The original scale was used to assess
health-related graph literacy in Germany and the United
States (U.S.), and consisted of 8 graphs (bar graphs, line
graphs, a pie chart, and an icon array) and 13 questions.
Questions were designed to represent Curcio’s (1981) three
components of graph comprehension (i.e., reading the data,
reading between the data, and reading beyond the data). In
the Galesic and Garcia-Retamero (2011) study, the scale was
administered to nationally representative samples of 495 Ger-
man and 492 U.S. participants, ages 25 to 69. The scale
was found to have reasonable psychometric properties: Cron-
bach’s alpha was .74 for the German version and .79 for the
English version, and the total score on the scale correlated
significantly with participants’ educational level (r = .29 for
Germany; r = .54 for the U.S.) and numeracy skills (r = .32
for Germany; r = .50 for the U.S.), and with graph-reading
items from other measures (r = .32 for Germany; r = .50 for
the U.S.).

We modified the items of the Graph Literacy Scale to fit
the purpose of the current study.4 Items were changed to re-
flect educational rather than health-related topics, and were
translated from English into Dutch. The first author, who was
fluent in both English and Dutch, translated the items. The
second and the third authors, who also were fluent in both
English and Dutch, reviewed the translation and provided
feedback. Then the test was administered to 10 master’s stu-
dents in Education and Child Studies who provided feedback
on the items. Items were revised slightly on the basis of
this feedback. In addition, an item was added that included
a graph that was similar to the progress graphs commonly
used in the Netherlands. As a final step, the Graph-reading
Skills Test was translated back to English by the researchers
so that the CBM-graph Experts could complete the measure.

Participants’ scores on the Graph-reading Skills Test were
the number of items answered correctly, with a maximum
possible score of 14. Cronbach’s alpha for the test was .81.
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FIGURE 2 Sample of a student CBM graph. Graphs were presented to teachers in Dutch and in color. Numbers were added to this graph to be read in black
and white. In the original graphs, correct choices were in green, incorrect choices in blue, the goal line in red, and the slope line in black.

Measures: CBM Graph-Comprehension

Participants’ CBM graph-comprehension was assessed via
a think-aloud methodology. In a think-aloud methodology,
participants are asked to verbalize their thoughts while com-
pleting a task (Ericsson & Simon, 1993).

Think-Alouds

Our participants were asked to “think out loud” as they de-
scribed CBM graphs. They were provided with the following
instructions: “Describe the graph and think-out loud while
you are looking at the graph. Tell me what you see and what
you think. Tell me also where you are looking at and why
you are looking at that.”

Prior to completing the think-alouds, participants were
shown a sample of, and provided with a description of, a
CBM graph.5 Participants were told that the graph displayed
the reading progress of one student across a school year,
and that the data on the graph represented correct and in-
correct responses on 2-minute reading probes administered
weekly to students. The researcher then pointed to and de-

scribed each element of the graph (see Appendix for this
description).

Think-alouds were audiotaped and transcribed. Each tran-
scription was checked by a second person, who listened to the
tape while reading the transcription, and made corrections if
necessary. Disagreements, such as unclear utterances, were
resolved by the first author.

Coding Procedures for Standard Graphs

Think-alouds were coded based on the three components
of Curcio’s and Friel et al.’s framework for graph compre-
hension (Curcio, 1981; Friel et al., 2001). Recall that we
used CBM-specific terms for reading, reading between, and
reading beyond the data, namely reading, interpreting, and
linking the data to instruction. Coding was done by the first
author and by research assistants trained by the first and sec-
ond author. Coders were trained in five training sessions.
Each training session focused on a different aspect of the
coding procedure, and included an explanation of the pro-
cedure, opportunities for practice, and a reliability check.
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Coders had to be 80 percent reliable before they could begin
coding.

All data were double coded by the first author and a re-
search assistant. Disagreements in coding were discussed and
resolved. Intercoder agreement was calculated separately for
each aspect of the coding. To calculate agreement, every
third think-aloud was randomly selected, and coding agree-
ment was calculated by dividing the number of agreements
by the number of agreements plus disagreements, multiplied
by 100.

Two rounds of coding were done. The first focused on
participants’ ability to read the data. The second focused
on participants’ ability to interpret the data and link it to
instruction.

Round 1: Coding for Reading the Data

Procedures for coding for reading the data were based on pro-
cedures developed in previous research (see Espin, Wayman,
Deno, McMaster, and De Rooij, this issue; Wagner et al.,
this issue). Prior to coding, the think-alouds were parsed
into idea units (defined as a statement that expressed one
idea), and were assigned content labels corresponding to the
element of the graph to which they referred, using the defi-
nitions from Espin et al. Graph elements included Framing
(i.e., describing the graph-set up and meaning of the scores
or measures used); baseline (i.e., describing the beginning
level of performance of the student and/or peers); goal set-
ting (i.e., describing the goal line and/or long- or short term
goals); instructional phases 0, 1, 2, 3, and 4 (i.e., describ-
ing scores, progress, or variability within a specific phase);
and goal achievement (i.e., describing whether the student
achieved the goal). Statements that referred to general stu-
dent progress (across phases) rather than to progress within a
phase were assigned a general progress label. Statements that
did not refer to graph content (e.g., comparing one graph to

the other) and evaluative statements about the information on
the graph (e.g., wondering why the student had reading prob-
lems) were assigned a label of “other.” Statements that were
irrelevant to the content of the graph (e.g., asking if they
were speaking loud enough) were not coded. To illustrate
the content label coding, a sample of a coded think-aloud is
provided in Table 1. Intercoder agreement for content label
coding was 79.70 percent.

After each idea unit was assigned a content label, the
think-alouds were coded for three different aspects of reading
the data: Accuracy, completeness, and sequential coherence.

Accuracy was the extent to which the statements in the
think-aloud were correct. Incorrect statements were those
that clearly conflicted with the data presented in the graph—
for example, if a participant stated that a student was making
progress, but the slope line on the graph was negative. Accu-
racy was reported as a percentage score, and was calculated
by dividing the number of idea units coded as accurate by
the total number of idea units. Higher scores reflected a more
accurate think-aloud. Intercoder agreement for accuracy was
95.27 percent.

Completeness was the extent to which the think-aloud
included mention of nine graph elements: Framing, base-
line, goal-setting, phases 0, 1, 2, 3, and 4, and goal achieve-
ment. One point was assigned for each element mentioned.
The completeness score thus ranged from 0 to 9, with a
higher score reflecting a more complete think-aloud. Inter-
coder agreement for completeness was 100 percent.

Sequential coherence was the extent to which partici-
pants described the nine graph elements (see Completeness)
in a coherent and logical manner. The concept of sequen-
tial coherence was developed in an earlier study (see Es-
pin et al., this issue), and reflected the sequential steps one
would take to create and use CBM graphs for evaluation
of student growth and instructional effectiveness. The ideal
sequence is one in which participants describe the graph el-
ements in the following order: From the set-up of the graph

TABLE 1
Sample of a Coded Think-Aloud

Transcription of the Think-Aloud Content Label

1. This is the graph of a 6th-grade student. FR
2. First I look at the current level of performance of the student to find out how this student performs in comparison to peers. BL
3. Then I look at the long term goal that has been set for this student. The goal for the student is to be at the current level of

his/her peers.
GS

4. During initial instruction, some of the student’s scores are above the goal,2 but the slope is negative: the line decreases. P0
5. So a change was made3 to help the student to achieve the goal. This change was effective,3 the student is heading towards the

goal.2
P1

6. After that another change was made, but this change was less positive.1 The student performed less well than in the previous
phase.1 The student grows somewhat, but at this rate he will not achieve the goal.2

P2

7. During the next change, intervention 3, we see a small increase. The student’s growth is better.1 P3
8. The slope line of phase 4 is again very steep, similar to phase 1,1 but the scores are higher.1 I would thus recommend the

instruction of phase 4 for this student.3
P4

9. This student achieves the goal. GA

Note. FR = Framing the data; BL = Baseline data, GS = Goal Setting, P0 = Phase 0 (initial instruction) data, P1 = Phase 1 data, P2 = Phase 2 data, P3 =
Phase 3 data, P4 = Phase 4 data, GA = Goal Achievement.
1data-to-data comparison
2data-to-goal comparison
3data-to-instruction link
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(framing) to baseline, to goal-setting, to the consecutive in-
structional phases (P0-P4), to goal achievement. In the orig-
inal Espin et al. (this issue) study, a higher sequential co-
herence score was found to relate to higher expert ratings of
teacher think-alouds.

To code sequential coherence, the number of adjacent
think-aloud statements that followed the “ideal” sequence
were coded, for example, from framing to baseline (1 ideal
sequence), baseline to goal-setting (1 ideal sequence), goal-
setting to Phase 0, initial instruction (1 ideal sequence), and
so forth. If a participant described framing and then Phase 4
instruction, it was not scored as an “ideal” sequence. State-
ments coded as “other” were ignored in the sequential co-
herence coding. Sequential coherence was reported as a per-
centage score, and was calculated by dividing the number of
sequences in the ideal order by the total number of sequences.
Sequences that included a general progress statement were
excluded from this calculation. Higher sequential coher-
ence scores reflected a more coherent think-aloud. Intercoder
agreement for sequential coherence was 94.44 percent.

Round 2: Coding for Interpreting and Linking
the Data to Instruction

Within the second round of coding, think-alouds were coded
for two aspects of interpreting the data. We refer to these
aspects as data-to-data and data-to-goal comparisons. Data
also were coded for one aspect of linking the data to instruc-
tion. We refer to this aspect as data-to-instruction links.6 (In
the sample of the coded think-aloud in Table 1, examples of
these comparisons and links are underlined.)

Data-to-data comparisons were counted when partici-
pants compared data in one instructional phase to data in an-
other instructional phase. For example, the participant might
comment on differences in student growth across phases.

Data-to-goal comparisons were counted when partici-
pants compared student performance or progress data to the
goal line or the end-of-year goal. For example, the partici-
pant might comment on whether the data indicated that the
student was on track for achieving the goal. Data-to-goal
comparisons could involve comparisons with regard to level
(e.g., “Student performance is below the goal line”) or rate
(e.g., “The student was progressing at the expected rate”).

Data-to-instruction links were counted when participants
linked the data in the graph to the student’s reading instruc-
tion. For example, the participant might comment on the fact
that a positive slope indicated that the instruction was ef-
fective. Intercoder agreement for this round of coding was
80.09 percent.

Coding Procedures for Student Graphs

Student graphs differed from teacher to teacher because
teachers viewed and described graphs from their own stu-
dents. Recall that student graphs included only one instruc-
tional phase; thus, think-alouds could not be coded for com-
pleteness, accuracy, or sequential coherence, as was done
for the standard graphs. However, they could be coded for

interpreting and linking the data to instruction. With regard
to interpreting the data, only data-to-goal comparisons were
coded. (There was only one instructional phase, so data-to-
data comparisons could not be made.) In sum, data-to-goal
comparisons and data-to-instruction links were coded for the
student graphs. Intercoder agreement for coding of students
graphs was 90.36 percent.

RESULTS

We first report descriptive statistics on the graph-literacy
measures for teachers and experts. We then report on the
think-aloud data for the standard graphs for teachers and
experts, and then on the student graphs for teachers only.
Finally, we report on the relation between teachers’ graph
literacy and CBM graph-comprehension.

Participants’ Graph Literacy

Both teachers and experts completed the graph-literacy mea-
sures. An independent samples t-test and a Mann-Whitney U-
test were conducted to compare teachers’ and experts’ graph-
literacy scores. Scores for self-reported graph-interpretation
experience were significantly lower for the teachers (M =
2.83, SD = 0.72, range 2–4) than for the experts (M = 3.71,
SD = 0.49, range 3–4), t(28) = -3.05, p < .01, d = 1.15.
Obtained scores on the Graph-reading Skills Test were lower
for teachers (M = 11.57, SD = 2.69, Mdn = 12, range 3–14)
than for the experts (M = 12.71, SD = 1.38, Mdn = 13,
range 11–14), but the difference was not significant, U =
56.50, z = –0.93, p > .05. There was a ceiling effect on the
Graph-reading Skills Test (details reported later).

CBM Graph-Comprehension: Standard Graphs

Our first set of analyses focused on teachers’ comprehension
of the two standard graphs. Average scores across the think-
alouds for the two graphs were used in all analyses. Teach-
ers’ think-alouds for the standard graphs varied in length
from 45.50 to 470.50 words (M = 204.02, SD = 125.29)
and in the number of idea units from 3 to 24.50 idea units
(M = 11.09, SD = 5.32). Think-alouds for the General-graph,
Education-graph, and CBM-graph Experts were longer than
for the teachers, with an average of 398, 278.25, and
556.50 words, and 11.50, 16.25, and 17.67 idea units,
respectively.

Reading the Data

Descriptive statistics for accuracy, completeness, and sequen-
tial coherence (the three aspects of reading the data) are
reported in Table 2. Teachers were fairly accurate in their
think-alouds, with an average accuracy of 98 percent (range
87.50-100). Only 6 of the 23 teachers made any inaccu-
rate statements. Accuracy scores for teachers were similar to
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TABLE 2
Descriptive Statistics on Participants’ CBM Graph-Comprehension Scores for Standard Graphs

Teachers (n = 23) General-Graph Experts (n = 2) Education-Graph Experts (n = 2) CBM-Graph Experts (n = 3)
CBM Graph-Comprehension Score M (SD) M M M

Accuracy (percentage) 97.53 (4.47) 95.56 100 100
Completeness (score out of 9) 5.72 (2.37) 4.75 7.75 8.33
Sequential coherence (percentage) 51.71 (33.17) 22.98 59.72 85
Data-to-data comparisons (number) 1.67 (1.47) 4 4 4.83
Data-to-goal comparisons (number) 1.72 (1.49) 0.50 1.25 4.17
Data-to-instruction links (number) 0.98 (1.26) 1 2.75 5

Note. Accuracy, completeness, and sequential coherence scores reflect participants’ ability to read CBM data; the number of data-to-data and goal-comparisons
reflect participants’ ability to interpret CBM data; and the number of data-to-instruction links reflects participants’ ability to link CBM data to instruction.

those of the experts, whose average accuracy ranged from
96 percent to 100 percent.

Teachers were moderately complete in their think-alouds,
mentioning on average 6 of 9 possible graph elements in their
think-alouds, with scores ranging from 1 to 9. Goal achieve-
ment and data from instructional phase 1 were described
most often, while framing, baseline data, and goal setting
were described least often. Teachers were more complete
than the General-graph Experts, who mentioned on average
5 out of the 9 graph elements, but less complete than the
Education-graph and CBM-graph Experts, who both men-
tioned on average 8 graph elements.

With regard to sequential coherence, results revealed that
teachers were moderately coherent, with an average se-
quential coherence of 52 percent. However, variability was
high, with scores ranging from 0 percent (for 5 teachers) to
100 percent (for 2 teachers). Teachers were more coherent
in their think-alouds than the General-graph Experts, who
had average coherence scores of 23 percent, but less coher-
ent than the Education-graph and CBM-graph Experts, who
had average coherence scores of 60 percent and 85 percent,
respectively.

Interpreting and Linking the data to Instruction

With regard to interpreting the data, teachers made on av-
erage 2 data-to-data and 2 data-to-goal comparisons (see
Table 2), with a range of 0 to 5.50 comparisons for each.
Twenty teachers made at least 1 data-to-data comparison and
19 teachers made at least 1 data-to-goal comparison. Teachers
made fewer data-to-data comparisons (with an average of 2)
than the General-graph, Education-graph, and CBM-graph
Experts, who made an average of 4, 4, and 5 data-to-data
comparisons, respectively. Teachers made more data-to-goal
comparisons (with an average of 2) than the General-graph
and Education-graph Experts, who both made an average of
0.5 to 1 data-to-goal comparison, but fewer than the CBM-
graph Experts, who made an average of 4 data-to-goal com-
parisons.

With regard to linking the data to instruction, results
revealed that teachers made on average only 1 data-to-
instruction link (see Table 2), with a range of 0 to 4 links.
Only 11 teachers made at least 1 data-to-instruction link in
their think-alouds. Teachers made the same number of links
as the General-graph Experts, who also made 1 link, but

fewer than the Education-graph and CBM-graph Experts,
who made 3 and 5 links, respectively.

CBM Graph-Comprehension: Student graphs

Our second set of analyses focused on teachers’ comprehen-
sion of the student graphs. Recall that the student graphs were
coded only for interpreting (and only for data-to-goal com-
parisons) and for linking data to instruction. Average scores
across the think-alouds of the two student graphs were used
in the analyses.7

Interpreting and Linking the Data to Instruction

With regard to interpreting the data, teachers made 1.22
(SD = 0.85) data-to-goal comparisons, with a range from 0
to 4. Twenty teachers made at least 1 data-to-goal compari-
son. With regard to linking the data to instruction, teachers
made 0.28 (SD = 0.58) data-to-instruction links, with scores
ranging from 0 to 2. Only six teachers made at least 1 data-to-
instruction link in their think-alouds for the student graphs.

CBM Graph-Comprehension: Standard versus
Student Graphs

To compare results across standard and student graphs, the
proportion of teachers who made at least one data-to-goal
comparison or data-to-instruction link was calculated. The
results of two McNemar’s tests using a binominal distri-
bution revealed no significant difference in the proportion
of teachers who made at least one data-to-goal comparison
for the standard graphs (83 percent) and the student graphs
(87 percent), p > .05, and no significant difference in the pro-
portion of teachers who made at least one data-to-instruction
link for the standard graphs (48 percent) and the student
graphs (26 percent), p > .05.

Relation between Graph Literacy and CBM
Graph-Comprehension

Correlational analyses were conducted to examine the re-
lations between teachers’ graph literacy, as measured via a
self-report question and a Graph-reading Skills Test, and their
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TABLE 3
Correlations between Teachers’ Graph-literacy Scores and CBM Graph-comprehension Scores for Standard and Student Graphs

CBM Standard Graphs CBM Student Graphs

Graph-Literacy Measures Accuracy Completeness
Sequential
coherence

Data-to-
Data

comparisons
Data-to-Goal
comparisons

Data-to-
Instruction

links
Data-to-Goal
comparisons

Data-to-
Instruction

links

Self-report question
graph-interpretation
experience

−.22 .35 .48∗ .25 .65∗∗ .43∗ .07 .52∗∗

Graph-reading Skills Test
All items .09 −.18 −.02 .14 −.22 −.04 −.12 −.34
5 discriminating items .24 .23 −.03 .12 .28 .29 −.25 .46∗

Note. N = 21. Correlations in italics are Pearson correlations; the others are Kendalls’ tau correlations.
∗p < .05.
∗∗p < .01.

comprehension of the standard and student CBM graphs, as
measured via think-alouds.

Prior to the correlational analyses, accuracy and sequential
coherence scores were transformed with arcsine-square root
transformation because proportion variables do not have a
normal distribution (Cohen & Cohen, 1983; Osborne, 2009).
For the standard graphs, teachers’ (transformed) think-
aloud scores (i.e., accuracy, completeness, sequential coher-
ence, number of data-to-data and data-to-goal comparisons,
and number of data-to-instruction links) were all normally
distributed. For the student graphs, teachers’ think-aloud
scores (i.e., number of data-to-goal comparisons and data-to-
instruction links) were not normally distributed. For analyses
involving variables that were non-normally distributed, non-
parametric tests were used. Kendall’s tau (τ ) was used rather
than Spearman’s rho for those non-parametric tests because
our sample was small and included tied ranks for the think-
aloud scores (Field, 2009). For the analyses involving vari-
ables that were normally distributed, Pearson (r) was used.
Results of the correlational analyses are reported in Table 3.

Relation between Self-Report Question and CBM
graph-comprehension

Teachers’ mean score on the self-report question about graph-
interpretation experience was 2.83 (SD = 0.72, range 2–4),
and their scores were normally distributed. Teachers’ scores
for the self-report question correlated significantly with se-
quential coherence scores (r = .48, p < .05) and with the
number of data-to-goal comparisons (r = .65, p < .01) and
data-to-instruction links (r = .43, p < .05) made for the
standard graphs. In addition, teachers’ scores for self-report
question correlated significantly with the number of data-to-
instruction links made for the student graphs (r = .52, p <
.01). No other correlations were significant (see Table 3).

Relation between Graph-reading Skills Test and
CBM graph-comprehension

Two teachers did not complete the Graph-reading Skills Test,
and were thus not included in analyses with scores for this

test. Teachers’ mean score on the Graph-reading Skills Test
was 11.57 (SD = 2.69, range 3–14) out of 14. Teachers’
scores for this test were not normally distributed; the distri-
bution of scores was strongly negatively skewed and kurtotic
(standardized skewness = -4.06 and standardized kurtosis =
4.63). A relatively large number of items on the test were an-
swered correctly by all, or nearly all, teachers. Therefore, we
conducted an item analysis to identify which items discrim-
inated best, and correlational analyses that included scores
for the Graph-reading Skills Test were conducted both with
the scores on the total test (14 items) and with scores on the
discriminating items only (see Table 3).

To select items that were discriminating, difficulty lev-
els and discrimination indices for each item were calculated.
Difficulty levels (p-values) were calculated by dividing the
number of teachers who answered the item correctly by the
total number of teachers completing the test. Discrimination
indices (d-values) were calculated by subtracting the propor-
tion of teachers from the bottom quartile (27 percent, to be
exact, n = 6) who answered the item correctly from the pro-
portion of teachers in the top quartile (27 percent, n = 6) who
answered the item correctly (Reynolds & Livingston, 2012).
Scores on the test for teachers in the bottom group ranged
from 3 to 11, and for teachers in the top group, ranged from
13 to 14 (the maximum score).

Guidelines suggested by Reynolds and Livingston (2012)
were used to identify and select the most discriminating
items. Items with p-values below .90 and d-values above
.30 were selected as discriminating items. Five items met
those criteria. Two of those five items represented the read-
ing between the data component of graph comprehension,
and the other three items represented the reading beyond the
data component.

For teachers’ total scores on the Graph-reading Skills
Test, the correlations between test scores and CBM graph-
comprehension scores ranged from −.34 to .14, and none
were significant (see Table 3). For the five discriminating
items, the correlations between test scores and CBM graph-
comprehension scores ranged from −.25 to .46 and were
only significant for the number of data-to-instruction links
made for the student graphs (τ = .46, p < .05). No other
correlations were significant.
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DISCUSSION

The purpose of this study was to examine inservice teachers’
CBM graph-comprehension, and to explore the influence of
factors that might affect that comprehension. We employed
a think-aloud strategy, and collected data from teachers on
both standard and student CBM progress graphs. For the
standard graphs, we also included data from three types of
gold-standard graph-reading experts. Finally, we examined
the relation between teachers’ graph literacy and CBM graph-
comprehension.

CBM Graph-Comprehension: Standard Graphs

Reading the Data

Teachers’ comprehension of the CBM standard graphs was
reasonably good. Teachers’ think-alouds were accurate and
were moderately complete and coherent. In fact, teachers’
performance on these three reading the data aspects was sim-
ilar to, or even better than, that of the General-graph-reading
Experts. Especially interesting was the fact that teachers
were much better at coherently describing the CBM graphs
than were General-graph Experts, illustrating the importance
of educational knowledge in the comprehension of CBM
graphs. The General-graph Experts had ample experience
and skill with graph reading, but not with reading graphs
that displayed the progress of students with reading difficul-
ties. The teachers, in contrast, had more educational knowl-
edge than the General-graph Experts, and this knowledge
apparently provided teachers with enough information to read
and describe the CBM graphs in a more coherent manner than
the General-graph Experts. Supporting this explanation is the
fact that sequential coherence scores for the teachers were
only somewhat lower than scores for the Education-graph
Experts. The difficulties experienced by the General-graph
Experts were surprising, given the fact that, prior to com-
pleting the think-alouds, participants were shown a sample
graph and were more or less told what was on the graph. Yet
telling a coherent “story” about a CBM graph proved to be a
challenge for the General-graph Experts.

Although comparing the teachers’ performance on read-
ing the data to that of the General-graph Experts paints a
positive picture, comparing it to the Education-graph and
CBM-graph Experts paints a bleaker picture. In other words,
although the teachers’ performance was not bad, there was
plenty of room for improvement. Compared to both the
Education-graph and CBM-graph Experts, teachers were less
complete in their think-alouds, and compared to the CBM-
graph Experts, they were far less coherent. The differences
between teachers and CBM-graph Experts replicate the find-
ings of Wagner et al. (this issue), who found that think-alouds
for preservice teachers’ were less complete and sequentially
coherent than think-alouds for CBM experts.

Comparing the teachers’ data from our study to that from
Espin et al.’s (this issue) study provides support for the idea
that there is room for improvement for the teachers. Es-
pin et al. examined think-alouds of experienced CBM users.
Teachers in the Espin et al. study had an average of 12 years of

experience using CBM to monitor student progress, and had
generated an average of 160 CBM progress graphs. Teachers
in our study were new to CBM, had not received intensive
CBM training, and had used CBM for only a short period
of time to collect data on student progress. The average se-
quential coherence for the teachers in the Espin et al. study
was 71 percent, compared to 52 percent for teachers in this
study, suggesting that with training and experience, teachers’
ability to read CBM graphed data improves. However, even
the experienced teachers in Espin et al.’s study were not as
coherent as the CBM-graph Experts from this/Wagner et al.’s
study.

Thus far, we have considered only the teachers’ mean
scores on the reading the data aspects, but it is also in-
formative to consider the variation in scores. The range of
teachers’ scores for sequential coherence was 0 percent to
100 percent, with five teachers having a sequential coher-
ence score of 0 percent, and for completeness, it was 1 to
9 (graph elements mentioned). Such variation in scores might
be expected, given the fact that people differ in their gen-
eral ability to understand and interpret graphs (Galesic &
Garcia-Retamero, 2011), yet this variation demonstrates that
some teachers have great difficulty reading CBM graphs.
It is perhaps worthwhile to note that even in the Espin
et al. (this issue) study, where participants were experi-
enced CBM users, wide variation was seen in sequential
coherence scores (from 56 percent for teachers who had
lower levels of understanding and interpretation of CBM
data, to 89 percent for teachers who had higher levels of
understanding and interpretation of CBM data). In sum, it
seems fair to say that some teachers are in need of more
support than others in learning to read CBM graphs. Given
the fact that teachers often are expected to share data from
CBM progress graphs with team members and/or parents,
it will be important to provide additional or different train-
ing for teachers who experience difficulties reading CBM
graphs.

Interpreting and Linking the Data to Instruction

Examination of the outcomes for the interpreting and link-
ing the data aspects shows a somewhat different pattern of
outcomes than for the reading the data aspects. Teachers
made fewer within-the-data (data-to-data plus data-to-goal)
comparisons than all three groups of experts, and fewer
data-to-instruction links than the Education-graph and CBM-
graph Experts. It would seem that the skills of interpreting
and linking the data to instruction are more difficult than
reading the data for the teachers. However, if there is “good
news,” it is that these skills also seem to be relatively dif-
ficult for the General-graph and Education-graph Experts.
For example, although the teachers made fewer within-the-
data comparisons (almost 3.5) than the General-graph and
Education-graph Experts (4.5 and 5.25 respectively), all three
groups made fewer comparisons than the CBM-graph Ex-
perts, who made 9 such comparisons. For linking the data
to instruction, although both teachers and General-graph
Experts made fewer links (1 each) than the Education-
graph Experts (2.75), all three groups made fewer links
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than the CBM-graph Experts, who made 5 such links.
The pattern of differences among the four groups of par-
ticipants supports Curcio’s and Friel’s (Curcio 1981; Friel
et al., 2001) contention that reading between and beyond
the data is more difficult than reading the data, and sug-
gests that teachers are in need of specific, directed instruc-
tion on how to interpret CBM data and on how to link it to
instruction.

CBM Graph-Comprehension: Student Graphs

It is possible that teachers’ difficulties with interpreting CBM
data and linking it to instruction were related to the fact that
the standard graphs presented fictitious information that was
not directly relevant to the teachers. Thus, we also exam-
ined teachers’ comprehension of student graphs. We antic-
ipated that teachers would be more likely to make data-to-
goal comparisons and data-to-instruction links if graphs were
from their own students. With student graphs, teachers could
bring to bear specific knowledge about the students and the
students’ instruction. Our expectations were not, however,
supported by the data.

Although the percentage of teachers who made data-to-
goal comparisons was similar for the standard and student
graphs (83 percent and 87 percent respectively), the percent-
age of teachers who made data-to-instruction links was not.
Even though the difference was not significant, it was fairly
large and was not in the expected direction (48 percent for
standard graphs, 26 percent for student graphs). The differ-
ence might be due to chance alone, or might merely reflect
the fact that there were more “phases” of instruction on the
standard graphs, and thus, more opportunities for teachers to
reflect on the link between the data and instruction in those
graphs (although, do recall, we did not compare the raw num-
ber of statements, but rather the percentage of teachers who
made at least one such link). However, if such a difference
were to be replicated in a study with a larger sample size, it
might reflect the fact that teachers find it difficult, or even
threatening, to evaluate instructional effectiveness as it re-
lates to their own students and their own reading instruction.
Regardless of the reasons for the difference, our data sug-
gest that in future research, it would be wise to consider the
fact that teachers’ CBM graph-comprehension might differ
for standard versus student graphs, and that their compre-
hension of student graphs might be affected by emotional
factors.

Relation between Graph Literacy and CBM
Graph-Comprehension

As a last step in the analyses, we examined the relation
between teachers’ graph literacy and their CBM graph-
comprehension. In sum, results revealed that teachers’
self-reported graph-interpretation experience was related to
some, but not all, aspects of their CBM graph-comprehension
ability. Teachers’ scores on the Graph-reading Skills Test,
however, were not related to any aspect of CBM graph-
comprehension.

Teachers with higher self-ratings on the graph-
interpretation experience question produced more coherent
think-alouds, and made more data-to-goal comparisons for
the standard graphs, and more data-to-instruction links for
both the standard and student graphs, than teachers with
lower self-ratings. These results are in line with the results of
Xi (2010) who found that participants who were more famil-
iar with graphs—as measured with a self-report measure—
provided graph descriptions that were better organized and
more sophisticated than participants who were less familiar
with graphs.

Although the results related to the self-report measures
suggest that graph literacy is important for CBM graph-
comprehension, conclusions must be tempered by the fact
that no relations were found between scores on the Graph-
reading Skills test and CBM graph-comprehension. Results
were likely affected by the restricted range of scores caused
by the ceiling effect on the Graph-reading Skills Test scores.
However, even the analyses conducted with the five most
discriminating items resulted in only one statistically signif-
icant relation: Teachers with higher scores on the five items
made more data-to-instruction links in their think-alouds for
student graphs than did teachers with lower scores for those
items.

The ceiling effect found on the Graph-reading Skills Test
was disappointing. We based the test on one used by Galesic
and Garcia-Retamero (2011), who reported promising psy-
chometric properties for the test. However, participants in
that study were sampled from the general population. In
their German and U.S. samples, respectively 79 percent and
72 percent of the participants were lower educated peo-
ple (i.e., people who completed high school or less). The
teachers in our study were more highly educated, with all
of them having completed post-secondary teacher education
programs, and some of them having completed or complet-
ing a university-level Bachelor or Master of Science pro-
gram. This difference in education might explain why our
teachers scored better on the Graph-reading Skills Test than
the participants in the Galesic and Garcia-Retamero (2011)
study.

To summarize, our results provide tentative support for
the importance of graph literacy on teachers’ CBM graph-
comprehension. Most important is the fact that for both the
self-report measure and the Graph-reading Skills Test (dis-
criminating items only, and student graphs only), a relation
was found between graph literacy and teachers’ ability to
link the data to instruction. At the very least, it seems rea-
sonable to suggest that researchers and trainers must take
into consideration teachers’ level of graph literacy when
providing instruction or conducting research on CBM graph-
comprehension.

Limitations and Recommendations for Future
Research

A major limitation of this study was that the relation between
teachers’ CBM graph-comprehension and teachers’ use of
the data for instructional decision-making, and the resulting
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effect on student achievement, was not examined. Such a
comparison is the next logical step in this line of research.

A second limitation of the study was the small sample
size, which limited the external validity of the results. All
participating teachers were from a specific region in the
Netherlands. Given the exploratory, descriptive nature of the
study, the sample size was appropriate. Nonetheless, it will
be important to replicate key findings of this study with a
larger, more representative sample, including teachers from
different regions and/or countries. When replicating the key
findings with a larger sample size, it would be important to
examine the potential moderating effects of teacher charac-
teristics on teachers’ comprehension of CBM graphs.

A third limitation was the think-aloud approach we chose
to use in the study. We used an open-ended think-aloud,
and provided general instructions to teachers (and experts),
merely saying “describe what you see.” It might have been
tempting for teachers to ignore parts of the graph that they
did not understand. The relatively high accuracy scores com-
bined with the moderate completeness scores support this
argument; that is, although what teachers said in their think-
alouds was usually accurate, they did not talk about all ele-
ments of the graph. An alternative approach would be to ask
teachers to describe the graph as if they were talking to a
student’s parent. Such an approach might encourage teachers
to attend to all graph elements, and might make the task more
realistic for teachers.

A final limitation of the study was that student graphs
had a different lay-out and depicted less information than
the standard graphs, and that they differed from teacher to
teacher. These differences made it somewhat challenging to
compare teachers’ performance on the standard and student
graphs, and to compare performance on the student graphs
across teachers. Although including student graphs intro-
duced challenges, it could also be viewed as a major strength
of the study because the student graphs presented teachers
with a more authentic situation than the standard graphs.

Final Thoughts: Do Teachers Need
to Comprehend CBM Graphs?

As a final point in the discussion, we wish to raise the issue of
whether teachers actually need to comprehend CBM graphs
in order to effectively use the graphed data to make instruc-
tional decisions. In other words, how important is it for teach-
ers to read, interpret, and link CBM data to instruction, given
the fact that computer-based progress-monitoring programs
can provide teachers with recommendations or prompts to
raise the goal or to change instruction?

This question is an empirical question that must be an-
swered in future research, but it is worthwhile to reflect
on the question here. We would argue that, even with
computer-generated decision-making supports, it is neces-
sary for teachers to be proficient at reading, interpreting, and
linking CBM data to instruction. There are several reasons to
believe that computer technology alone will not be enough
to guide teachers’ instructional decision-making.

First, as mentioned earlier, teachers often must describe
and discuss progress data with team members and/or parents.

To explain student progress data effectively, teachers must be
able to read and interpret CBM graphs, and be able to link
the data to instruction.

Second, CBM data patterns can be ambiguous, potentially
leading to two different but “correct” decisions (Espin, Saab,
Pat-El, Boender, & Van der Veen, 2016). In such situations, it
is imperative that teachers be able to combine CBM progress
data with other information about the student to arrive at
the “best” decision for that student. Teachers must correctly
recognize the ambiguity that is inherent in some data patterns,
and be willing to think beyond the recommendation provided
by a progress-monitoring program (Deno, 2013).

Finally, computer-generated instructional recommenda-
tions alone are not enough to ensure that teachers respond
to CBM data. That is, even when prompted to do so via the
computer, teachers sometimes do not respond to the data by
raising the goal or changing instruction (see Fuchs & Fuchs,
2002; Stecker et al., 2005, for reviews). There are several po-
tential explanations for teachers’ non-response. One may be
that teachers doubt the meaningfulness and usefulness of data
for instructional decision-making (Foegen, Espin, Allinder,
& Markell, 2001; Landrum, Cook, Tankersley, & Fitzgerald,
2007), and thus may not trust the instructional recommenda-
tions provided by progress-monitoring programs. Improving
teachers’ comprehension of CBM data might improve their
belief in the data, and thereby their willingness to respond
to the data. A second explanation may be that teachers have
to be involved with the data in order to make effective data-
based decisions. Fuchs and Fuchs (Fuchs, 1988; Fuchs &
Fuchs, 1989) suggested that computer applications can dis-
tance teachers from CBM data, and thereby limit teachers’
meaningful interpretation and use of the data. Supporting
this idea is a study by Fuchs, Fuchs, and Hamlett (1989) that
showed that enhancing teacher involvement with computer-
managed CBM led to improvements in timing of goal and
instructional changes.

CONCLUSION

In conclusion, the results of this study reveal that comprehen-
sion of CBM graphs is not as straight forward as one might
assume. Some of our teacher participants were unable to read
and describe CBM graphs in a complete and coherent man-
ner, and most of the teachers experienced difficulty with inter-
preting the data and linking it to instruction, suggesting that
teachers need training in or help with reading, interpreting,
and linking CBM data to instruction. Such training should
be provided to preservice teachers as part of their education,
and to inservice teachers in the form of professional devel-
opment courses. If teachers do not read the data accurately,
completely, and coherently, or do not make within-the-data
comparisons or data-to-instruction links, it is possible that
use of CBM will not lead to improvements in instruction and
student achievement. If teachers are expected to base their
instructional decisions for students with learning difficulties
on data, teachers must be equipped to comprehend graphed
student progress data in a way that enables them to engage in
data-based decision-making and become successful problem
solvers.
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NOTES

1. The Netherlands has a binary system of higher
education. Thus, there are two types of higher
education—research-oriented education and
professional-oriented education. Research-oriented
education is typically offered at research universities,
professional-oriented education at universities of
applied sciences (EP-Nuffic, 2016). Teacher educa-
tion falls primarily under the professional-oriented
education system.

2. We obtained permission from the authors of the Wag-
ner et al. (this issue) study and from the CBM expert
participants to refer to the original data in the present
study, and to recode and reanalyze parts of their think-
aloud data.

3. Teachers had no access to the student scores or the
student graphs; they thus did not see the student
graphs before they completed the think-alouds for
those graphs.

4. We obtained permission from the developers of the
Graph Literacy Scale to modify the items, and to use
the modified scale in the present study.

5. Note that the CBM experts in the Wagner et al. (this
issue) study were not provided with a description of a
sample graph. However, our teachers and experts were
new to or had never heard of CBM; thus, we felt that
it was necessary to provide an overview of the graphs
before asking them to complete the think-alouds.

6. For this round of coding, comparisons or links refer-
ring to incorrect choices were not coded. This was
done because it is the number of correct choices that
reflects progress, not the number of incorrect choices.

7. One teacher described only one student graph. In the
analyses, the scores for that one graph were used as
the average score.

REFERENCES

Boote, S. K. (2014). Assessing and understanding line graph interpretations
using a scoring rubric of organized cited factors. Journal of Science
Teacher Education, 25(3), 333–354.

Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation anal-
ysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence
Erlbaum.

Curcio, F. R. (1981). The effect of prior knowledge, reading and mathemat-
ics achievement, and sex on comprehending mathematical relation-
ships expressed in graphs (Doctoral thesis). Retrieved from ProQuest.
(8128203)

Deno, S. L. (1985). Curriculum-based measurement: The emerging alterna-
tive. Exceptional Children, 52(3), 219–232.

Deno, S. L. (2003). Developments in curriculum-based measurement. The
Journal of Special Education, 37(3), 184–192.

Deno, S. L. (2013). Problem-solving assessment. In R. Brown-Chidsey &
K. J. Andren (Eds.), Assessment for intervention: A problem-solving
approach (2nd ed., pp. 10–36). New York: Guilford Press.

Deno, S. L., & Fuchs, L. (1987). Developing curriculum-based measurement
systems for data-based special education problem solving. Focus on
Exceptional Children, 19(8), 1–16.

EP-Nuffic. (2016). Higher education system in the Netherlands.
Retrieved from https://www.epnuffic.nl/en/files/documents/factsheet-
higher-education-system-in-the-netherlands.pdf

Espin, C. A., Saab, N., Pat-El, R., Boender, P., & Van der Veen, J. (2016).
Curriculum-based measurement progress data: Effects of graph pattern
on ease of interpretation. Unpublished manuscript.

Espin, C. A., Wallace, T., Lembke, E., Campbell, H., & Long, J. (2010). Cre-
ating a progress-monitoring system in reading for middle-school stu-
dents: Tracking progress toward meeting high-stakes standards. Learn-
ing Disabilities Research & Practice, 25(2), 60–75.

Espin, C. A., Wayman, M. M., Deno, S. L., McMaster, K. L., & De Rooij,
M. (2017). Data-based decision-making: Developing a method for cap-
turing teachers’ understanding of CBM graphs. Learning Disabilities
Research & Practice, 32(1), 8–21.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis. Verbal reports
as data (revised ed.). Cambridge, MA: The MIT Press.

Field, A. (2009). Discovering statistics using SPSS. Los Angeles: SAGE
Publications Ltd.

Foegen, A., Espin, C. A., Allinder, R. M., & Markell, M. (2001). Translating
research into practice: Preservice teachers’ beliefs about curriculum-
based measurement. The Journal of Special Education, 34, 226–236.

Foegen, A., Jiban, C., & Deno, S. L. (2007). Progress monitoring measures
in mathematics: A review of the literature. The Journal of Special
Education, 41(2), 121–139.

Freedman, E. G., & Shah, P. (2002). Toward a model of knowledge-based
graph comprehension. In M. Hegarty, B. Meyer, & N. Hari Narayanan
(Eds.), Diagrammatic representation and inference (pp. 18–30). Berlin:
Springer-Verlag.

Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of
graphs: Critical factors influencing comprehension and instructional
implications. Journal for Research in Mathematics Education, 32(2),
124–158.

Fuchs, L. S. (1988). Effects of computer-managed instruction on
teachers’ implementation of systematic monitoring programs and
student achievement. Journal of Educational Research, 81(5),
294–304.

Fuchs, L. S., & Fuchs, D. (1989). Enhancing curriculum-based measurement
through computer applications: Review of research and practice. School
Psychology Review, 18(3), 317–327.

Fuchs, L. S., & Fuchs, D. (2002). Computer applications to curriculum-based
measurement. Special Services in the Schools, 17(1-2), 1–14.

Fuchs, L. S., Fuchs, D., & Hamlett, C. H. (1989). Computers and curriculum-
based measurement: Effects of teacher feedback systems. School Psy-
chology Review, 18(1), 112–125.

Galesic, M., & Garcia-Retamero, R. (2011). Graph literacy: A cross-cultural
comparison. Medical Decision Making, 31(3), 444–457.

Glazer, N. (2011). Challenges with graph interpretation: A review of the
literature. Studies in Science Education, 47(2), 183–210.

Kim, S., Lombardino, L. J., Cowles, W., & Altmann, L. J. (2014).
Investigating graph comprehension in students with dyslexia: An
eye tracking study. Research in Developmental Disabilities, 35,
1609–1622.

Kratochwill, T. R., Levin, J. R., Horner, R. H., & Swoboda, C. M.
(2014). Visual analysis of single-case intervention research: Concep-
tual and methodological issues. In T. R. Kratochwill & J. R. Levin
(Eds.), Single-case intervention research: Statistical and methodologi-
cal advances (pp. 91–125). Washington, D.C.: American Psychological
Association.

Landrum, T. J., Cook, B. G., Tankersley, M., & Fitzgerald, S. (2007). Teacher
perceptions of the usability of intervention information from personal
versus data-based sources. Education and Treatment of Children, 30(4),
27–42.

McMaster, K., & Espin, C. A. (2007). Technical features of curriculum-
based measurement in writing: A literature review. The Journal of
Special Education, 41(2), 68–84.



60 LEARNING DISABILITIES RESEARCH

Osborne, J. (2002). Notes on the use of data transformations. Practi-
cal Assessment, Research & Evaluation, 8(6), 1–8. Retrieved from
http://PAREonline.net/getvn.asp?v=8&n=6

Reynolds, C. R., & Livingston, R. B. (2012). Mastering modern psycholog-
ical testing. Leiden version. (Custom edition). Upper Saddle River, NJ:
Pearson.

Shah, P. (2002). Graph comprehension: The role of format, content and
individual differences. In M. Anderson, B. Meyer, & P. Oliver (Eds.),
Diagrammatic Representation and Reasoning (pp. 173–185). London:
Springer-Verlag.

Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research:
Implications for instruction. Educational Psychology Review, 14(1),
47–69.

Shin, J., Deno, S. L., & Espin, C. A. (2000). Technical adequacy of the
maze task for curriculum-based measurement of reading growth. The
Journal of Special Education, 34(3), 164–172.

Stecker, P. M., Fuchs, L. S., & Fuchs, D. (2005). Using curriculum-based
measurement to improve student achievement: Review of research.
Psychology in the Schools, 42(8), 795–819.

Wagner, D. L., Hammerschmidt-Snidarich, S., Espin, C. A., Seifert, K., &
McMaster, K. L. (2017). Pre-service teachers’ interpretation of CBM
progress monitoring data. Learning Disabilities Research & Practice,
32(1), 22–31.

Wayman, M. M., Wallace, T., Wiley, H. I., Tichá, R., & Espin, C.A. (2007).
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Appendix

Description of the Sample CBM Graph

In the graph you see the baseline level of the student (point to
baseline data). The baseline phase shows the student’s level
of performance compared to peers at the start of the school
year (point to peer data). The baseline data are used to set a
long-range goal for the student for the end of the school year
(point to goal line and end point of goal line). In the graph
you can see the initial instructional phase for this student
(point to first phase), followed by four phases representing
changes to that instruction (point to phases). For each phase,
you can see the student’s response to the reading instruction
in that phase (point to slope lines).
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