1,080 research outputs found
Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere
Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr<sub>3</sub>) and dibromomethane (CH<sub>2</sub>Br<sub>2</sub>), assuming a uniform convective detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach
Factors controlling Arctic denitrification in cold winters of the 1990s
International audienceDenitrification of the Arctic winter stratosphere has been calculated using a 3-D microphysical model for the winters 1994/95, 1995/96, 1996/97 and 1999/2000. Denitrification is assumed to occur through the sedimentation of low number concentrations of large nitric acid trihydrate (NAT) particles, as observed extensively in 1999/2000. We examine whether the meteorological conditions that allowed NAT particles to grow to the very large sizes observed in 1999/2000 also occurred in the other cold winters. The results show that winter 1999/2000 had conditions that were optimum for denitrification by large NAT particles, which are a deep concentric cold pool and vortex. Under these conditions, NAT particles can circulate in the cold pool for several days, reaching several micrometres in radius and leading to a high downward flux of nitric acid. The other winters had shorter periods with optimum conditions for denitrification. However, we find that NAT particles could have grown to large sizes in all of these winters and could have caused significant denitrification. We define the quantity "closed flow area'' (the fraction of the cold pool in which air parcel trajectories can form closed loops) and show that it is a very useful indicator of possible denitrification. We find that even with a constant NAT nucleation rate throughout the cold pool, the average NAT number concentration and size can vary by up to a factor of 10 in response to this meteorological quantity. These changes in particle properties account for a high degree of variability in denitrification between the different winters. This large meteorologically induced variability in denitrification rate needs to be compared with that which could arise from a variable nucleation rate of NAT particles, which remains an uncertain quantity in models
The response of a neutral atom to a strong laser field probed by transient absorption near the ionisation threshold
We present transient absorption spectra of an extreme ultraviolet attosecond pulse train in helium dressed by an 800 nm laser field with intensity ranging from W/cm to W/cm. The energy range probed spans 16-42 eV, straddling the first ionisation energy of helium (24.59 eV). By changing the relative polarisation of the dressing field with respect to the attosecond pulse train polarisation we observe a large change in the modulation of the absorption reflecting the vectorial response to the dressing field. With parallel polarized dressing and probing fields, we observe significant modulations with periods of one half and one quarter of the dressing field period. With perpendicularly polarized dressing and probing fields, the modulations of the harmonics above the ionisation threshold are significantly suppressed. A full-dimensionality solution of the single-atom time-dependent Schr odinger equation obtained using the recently developed ab-initio time-dependent B-spline ADC method reproduce some of our observations
The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study
International audienceBromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height) model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at northern hemisphere mid-latitudes of only ?55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for ?45% of the model estimated column ozone loss at northern hemisphere mid-latitudes. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called ?-factor, is about 73 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in ?. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean ?-factor
The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring
Calculations of equivalent length from an artificial advected tracer provide new insight into the isentropic transport processes occurring within the Antarctic stratospheric vortex. These calculations show two distinct regions of approximately equal area: a strongly mixed vortex core and a broad ring of weakly mixed air extending out to the vortex boundary. This broad ring of vortex air remains isolated from the core between late winter and midspring. Satellite measurements of stratospheric H2O confirm that the isolation lasts until at least mid-October. A three-dimensional chemical transport model simulation of the Antarctic ozone hole quantifies the ozone loss within this ring and demonstrates its isolation. In contrast to the vortex core, ozone loss in the weakly mixed broad ring is not complete. The reasons are twofold. First, warmer temperatures in the broad ring prevent continuous polar stratospheric cloud (PSC) formation and the associated chemical processing (i.e., the conversion of unreactive chlorine into reactive forms). Second, the isolation prevents ozone-rich air from the broad ring mixing with chemically processed air from the vortex core. If the stratosphere continues to cool, this will lead to increased PSC formation and more complete chemical processing in the broad ring. Despite the expected decline in halocarbons, sensitivity studies suggest that this mechanism will lead to enhanced ozone loss in the weakly mixed region, delaying the future recovery of the ozone hole
The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model
Empirical relationships that link cloud droplet number (CDN) to aerosol number or mass are commonly used to calculate global fields of CDN for climate forcing assessments. In this work we use a sectional global model of sulfate and sea-salt aerosol coupled to a mechanistic aerosol activation scheme to explore the limitations of this approach. We find that a given aerosol number concentration produces a wide range of CDN concentrations due to variations in the shape of the aerosol size distribution. On a global scale, the dependence of CDN on the size distribution results in regional biases in predicted CDN (for a given aerosol number). Empirical relationships between aerosol number and CDN are often derived from regional data but applied to the entire globe. In an analogous process, we derive regional "correlation-relations" between aerosol number and CDN and apply these regional relations to calculations of CDN on the global scale. The global mean percentage error in CDN caused by using regionally derived CDN-aerosol relations is 20 to 26%, which is about half the global mean percentage change in CDN caused by doubling the updraft velocity. However, the error is as much as 25–75% in the Southern Ocean, the Arctic and regions of persistent stratocumulus when an aerosol-CDN correlation relation from the North Atlantic is used. These regions produce much higher CDN concentrations (for a given aerosol number) than predicted by the globally uniform empirical relations. CDN-aerosol number relations from different regions also show very different sensitivity to changing aerosol. The magnitude of the rate of change of CDN with particle number, a measure of the aerosol efficacy, varies by a factor 4. CDN in cloud processed regions of persistent stratocumulus is particularly sensitive to changing aerosol number. It is therefore likely that the indirect effect will be underestimated in these important regions
The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study
Bromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height) model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at Northern Hemisphere mid-latitudes of only &#x2248;55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for &#x2248;45% of the model estimated column ozone loss at Northern Hemisphere mid-latitudes. However, since a large fraction of the bromine induced ozone loss is due to the combined BrO/ClO catalytic cycle, the effect of bromine would have been smaller in the absence of anthropogenic chlorine emissions. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called α-factor, is 64 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in α. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean α-factor
Revisiting the hemispheric asymmetry in mid-latitude ozone changes following the Mount Pinatubo eruption: A 3-D model study
Following the eruption of Mt. Pinatubo, satellite and in-situ measurements showed a large enhancement in stratospheric aerosol in both hemispheres, but significant mid-latitude column O3 depletion was observed only in the north. We use a three-dimensional chemical transport model to determine the mechanisms behind this hemispheric asymmetry. The model, forced by European Centre for Medium-Range Weather Forecasts ERA-Interim reanalyses and updated aerosol surface area density, successfully simulates observed large column NO2 decreases and the different extents of ozone depletion in the two hemispheres. The chemical ozone loss is similar in the northern (NH) and southern hemispheres (SH), but the contrasting role of dynamics increases the depletion in the NH and decreases it in the SH. The relevant SH dynamics are not captured as well by earlier ERA-40 reanalyses. Overall the smaller SH column O3 depletion can be attributed to dynamical variability and smaller SH background lower stratosphere O3 concentrations
Influence of the wintertime North Atlantic Oscillation on European tropospheric composition: an observational and modelling study
We have used satellite observations and a simulation from the TOMCAT chemistry transport model (CTM) to investigate the influence of the well-known wintertime North Atlantic Oscillation (NAO) on European tropospheric composition. Under the positive phase of the NAO (NAO-high), strong westerlies tend to enhance transport of European pollution (e.g. nitrogen oxides, NOx; carbon monoxide, CO) away from anthropogenic source regions. In contrast, during the negative phase of the NAO (NAO-low), more stable meteorological conditions lead to a build-up of pollutants over these regions relative to the wintertime average pollution levels. However, the secondary pollutant ozone shows the opposite signal of larger values during NAO-high. NAO-high introduces Atlantic ozone-enriched air into Europe, while under NAO-low westerly transport of ozone is reduced, yielding lower values over Europe. Furthermore, ozone concentrations are also decreased by chemical loss through the reaction with accumulated primary pollutants such as nitric oxide (NO) in NAO-low. Peroxyacetyl nitrate (PAN) in the upper troposphere–lower stratosphere (UTLS) peaks over Iceland and southern Greenland in NAO-low, between 200 and 100 hPa, consistent with the trapping by an anticyclone at this altitude. Model simulations show that enhanced PAN over Iceland and southern Greenland in NAO-low is associated with vertical transport of polluted air from the mid-troposphere into the UTLS. Overall, this work shows that NAO circulation patterns are an important governing factor for European wintertime composition and air pollution
Mid-latitude ozone changes: studies with a 3-D CTM forced by ERA-40 analyses
International audienceWe have used an off-line three-dimensional (3-D) chemical transport model (CTM) to study long-term changes in stratospheric O3. The model was run from 1977?2004 and forced by ECMWF ERA-40 and operational analyses. Model runs were performed to examine the impact of increasing halogens and additional stratospheric bromine from short-lived source gases. The analyses capture much of the observed interannual variability in column ozone, but there are also unrealistic features. In particular the ERA-40 analyses cause a large positive anomaly in northern hemisphere (NH) column O3 in the late 1980s. Also, the change from ERA-40 to operational winds at the start of 2002 introduces abrupt changes in some model fields which affect analysis of trends. The model reproduces the observed column increase in NH mid-latitudes from the mid 1990s. Analysis of a run with fixed halogens shows that this increase is not due to a significant decrease in halogen-induced loss, i.e. is not an indication of recovery. The model predicts only a small decrease in halogen-induced loss after 1999. In the upper stratosphere, despite the modelled turnover of chlorine around 1999, O3 does not increase to the effects of increasing ECMWF temperatures, decreasing modelled CH4 at this altitude, and abrupt changes to the SH temperatures at the end of the ERA-40 period. The impact of an additional 5 pptv stratospheric bromine from short-lived species decreases mid-latitude column O3 by about 10 DU. However, the impact on the modelled relative O3 anomaly is generally small except during periods of large volcanic loading
- …
