124 research outputs found

    A Systematic Search for Corotating Interaction Regions in Apparently Single Galactic Wolf-Rayet Stars. II. A Global View of the Wind Variability

    Full text link
    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named Co-rotating Interaction Regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of ~100 and determined its variability level using the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR 55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data in hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v~12.5, and some WR stars with 12.5 < v <= 13.5; i.e. all the stars presented in our two papers and 4 more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8 %) present large-scale variability, but only 12/54 stars (~22.1 %) are potentially of CIR-type. Also, we find 31/68 stars (45.6 %) that only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data in hand for 14/68 (20.6 %) stars. Interestingly, the variability with the highest amplitude also have the widest mean velocity dispersion.Comment: 14 pages, 24 figures, 2 tables, Accepted in Ap

    Properties of massive stars in four clusters of the VVV survey

    Full text link
    The evolution of massive stars is only partly understood. Observational constraints can be obtained from the study of massive stars located in young massive clusters. The ESO Public Survey VISTA Variables in the Via Lactea (VVV) discovered several new clusters hosting massive stars. We present an analysis of massive stars in four of these new clusters. Our aim is to provide constraints on stellar evolution and to better understand the relation between different types of massive stars. We use the radiative transfer code CMFGEN to analyse K-band spectra of twelve stars with spectral types ranging from O and B to WN and WC. We derive the stellar parameters of all targets as well as surface abundances for a subset of them. In the Hertzsprung-Russell diagram, the Wolf-Rayet stars are more luminous or hotter than the O stars. From the log(C/N) - log(C/He) diagram, we show quantitatively that WN stars are more chemically evolved than O stars, WC stars being more evolved than WN stars. Mass loss rates among Wolf-Rayet stars are a factor of 10 larger than for O stars, in agreement with previous findings.Comment: paper accepted in New Astronom

    A not so massive cluster hosting a very massive star

    Full text link
    We present the first physical characterization of the young open cluster VVV CL041. We spectroscopically observed the cluster main-sequence stellar population and a very-massive star candidate: WR62-2. CMFGEN modeling to our near-infrared spectra indicates that WR62-2 is a very luminous (106.4±0.2L^{6.4\pm0.2} L_{\odot}) and massive (80M\sim80 M_{\odot}) star.Comment: 1 page, 1 figure, to be published in the "International Workshop on Wolf-Rayet Stars conference proceedings" by Universit\"atsverlag Potsdam (editors: W.-R. Hamann, A. Sander, and H. Todt

    The embedded clusters DBS 77, 78, 102, and 160-161 and their link with the interstellar medium

    Get PDF
    Aims. We report a study of the global properties of some embedded clusters placed in the fourth quadrant of the Milky Way to clarify some issues related with their location into the Galaxy and their stellar formation processes. Methods. We performed BVI photometric observations in the region of DBS 77, 78, 102, 160, and 161 clusters and infrared spectroscopy in DBS 77 region. They were complemented with JHK data from VVV survey combined with 2MASS catalogue, and used mid-infrared information from GLIMPSE catalogue. We also searched for HI data from SGPS and PMN radio surveys, and previous spectroscopic stellar classification. The spectroscopic and photometric information allowed us to estimate the spectral classification of the brightest stars of each studied region. On the other hand, we used the radio data to investigate the interstellar material parameters and the continuum sources probably associated with the respective stellar components. Results. We estimated the basic physical parameters of the clusters (reddening, distance, age, and initial mass function). We searched for HII regions located near to the studied clusters and we analyzed the possible link between them. In the particular case of DBS 160-161 clusters, we identified the HI bubble B332.5-0.1-42 located around them. We found that the mechanical energy injected to the interstellar medium by the more massive stars of this couple of clusters was enough to generate the bubble.Comment: 15 pages, 14 figures, 6 tables, accepted for publication in A&

    MOST light-curve analysis of the gamma Dor pulsator HR 8799, showing resonances and amplitude variations

    Get PDF
    Context The central star of the HR 8799 system is a gamma Doradus-type pulsator. The system harbours four planetary-mass companions detected by direct imaging, and is a good solar system analogue. The masses of the companions are not known accurately, because the estimation depends strongly on the age of the system, which is also not known with sufficient accuracy. Asteroseismic studies of the star might help to better constrain the age of HR\,8799. We organized an extensive photometric and multi-site spectroscopic observing campaign for studying the pulsations of the central star. Aims The aim of the present study is to investigate the pulsation properties of HR 8799 in detail via the ultra-precise 47-d-long nearly continuous photometry obtained with the MOST space telescope, and to find as many independent pulsation modes as possible, which is the prerequisite of an asteroseismic age determination. Methods We carried out Fourier analysis of the wide-band photometric time series. Results e find that resonance and sudden amplitude changes characterize the pulsation of HR 8799. The dominant frequency is always at f_1 = 1.978 d^-1. Many multiples of one ninth of the dominant frequency appear in the Fourier spectrum of the MOST data: n/9 f_1, where n = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 18\}. Our analysis also reveals that many of these peaks show strong amplitude decrease and phase variations even on the 47-d time-scale. The dependencies between the pulsation frequencies of HR 8799 make the planned subsequent asteroseismic analysis rather difficult. We point out some resemblance between the light curve of HR 8799 and the modulated pulsation light curves of Blazhko RR Lyrae stars

    WR 35a: A new double-lined spectroscopic binary

    Get PDF
    Aims. We present the first orbital solution for the Wolf-Rayet star, WR 35a, that was discovered by a spectroscopic monitoring of faint WN-type stars. Methods. Spectral features of two different components were identified, and thus a method of disentangling the individual spectra of both components was applied. Radial velocities were determined for each component in the binary system. Results. The orbital solution and component properties of the system were derived. We determined that WR 35a is composed of a WN6 star with a O8.5 V companion orbiting at a 41.90-day period.Facultad de Ciencias Astronómicas y Geofísica

    WR 110: A Single Wolf-Rayet Star With Corotating Interaction Regions In Its Wind?

    Get PDF
    A 30-day contiguous photometric run with the MOST satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 +/- 0.55 days along with a number of harmonics at periods P/n, with n ~ 2,3,4,5 and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic RV studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ~ 0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base of, a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ~ two thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.Comment: 25 pages, 8 figures, 2 tables, accepted in Ap

    WR 35a: A new double-lined spectroscopic binary

    Get PDF
    Aims. We present the first orbital solution for the Wolf-Rayet star, WR 35a, that was discovered by a spectroscopic monitoring of faint WN-type stars. Methods. Spectral features of two different components were identified, and thus a method of disentangling the individual spectra of both components was applied. Radial velocities were determined for each component in the binary system. Results. The orbital solution and component properties of the system were derived. We determined that WR 35a is composed of a WN6 star with a O8.5 V companion orbiting at a 41.90-day period.Facultad de Ciencias Astronómicas y Geofísica
    corecore