13 research outputs found

    Conceptual design of the AGATA 1 pi array at GANIL

    No full text
    The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam gamma-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy gamma rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l pi array are presented

    Lifetime measurements in 52,54^{52,54}Ti to study shell evolution toward N=32N=32

    Get PDF
    International audienceLifetimes of the excited states in the neutron-rich Ti52,54 nuclei, produced in a multinucleon-transfer reaction, were measured by employing the Cologne plunger device and the recoil-distance Doppler-shift method. The experiment was performed at the Grand Accélérateur National d'Ions Lourds facility by using the Advanced Gamma Tracking Array for the γ-ray detection, coupled to the large-acceptance variable mode spectrometer for an event-by-event particle identification. A comparison between the transition probabilities obtained from the measured lifetimes of the 21+ to 81+ yrast states in Ti52,54 and that from the shell-model calculations based on the well-established GXPF1A, GXPF1B, and KB3G fp shell interactions support the N=32 subshell closure. The B(E2) values for Ti52 determined in this work are in disagreement with the known data, but are consistent with the predictions of the shell-model calculations and reduce the previously observed pronounced staggering across the even-even titanium isotopes
    corecore