1,694 research outputs found
The impact of M-dwarf atmosphere modelling on planet detection
Being able to accurately estimate stellar parameters based on spectral
observations is important not only for understanding the stars themselves but
it is also vital for the determination of exoplanet parameters. M dwarfs are
discussed as targets for planet detection as these stars are less massive, less
luminous and have smaller radii making it possible to detect smaller and
lighter planets. Therefore M-dwarfs could prove to be a valuable source for
examining the lower mass end of planet distribution, but in order to do that,
one must first take care to understand the characteristics of the host stars
well enough. Up to date, there are several families of stellar model
atmospheres. We focus on the ATLAS9, MARCS and Drift-Phoenix families in the
M-dwarf parameter space. We examine the differences in the (Tgas, pgas)
structures, synthetic photometric fluxes and related colour indices.We find
discrepancies in the hotter regions of the stellar atmosphere between the ATLAS
and MARCS models. The MARCS and Drift-Phoenix models appear to agree to a
better extend with variances of less than 300K. We have compiled the broad-band
synthetic photometric fluxes of all models for the Johnson UBVRI and 2MASS
JHKs. The fluxes of MARCS differ from both ATLAS and Drift-Phoenix models in
the optical range.Comment: submitted to the proceedings of the conference 'Brown dwarfs come of
age', May 20-24 2013, Memorie della Societa Astronomica Italian
Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots
The first millimeter detection of a non-accreting ultracool dwarf
The well-studied M9 dwarf TVLM 513–46546 is a rapid rotator (P rot ~ 2 hr) hosting a stable, dipolar magnetic field of ~3 kG surface strength. Here we report its detection with ALMA at 95 GHz at a mean flux density of 56 ± 12 μJy, making it the first ultracool dwarf detected in the millimeter band, excluding young, disk-bearing objects. We also report flux density measurements from unpublished archival VLA data and new optical monitoring data from the Liverpool Telescope. The ALMA data are consistent with a power-law radio spectrum that extends continuously between centimeter and millimeter wavelengths. We argue that the emission is due to the synchrotron process, excluding thermal, free–free, and electron cyclotron maser emission as possible sources. During the interval of the ALMA observation that phases with the maximum of the object's optical variability, the flux density is higher at a ~1.8σ significance level. These early results show how ALMA opens a new window for studying the magnetic activity of ultracool dwarfs, particularly shedding light on the particle acceleration mechanism operating in their immediate surroundings
Discovery of carbon monoxide in the upper atmosphere of Pluto
Pluto's icy surface has changed colour and its atmosphere has swelled since
its last closest approach to the Sun in 1989. The thin atmosphere is produced
by evaporating ices, and so can also change rapidly, and in particular carbon
monoxide should be present as an active thermostat. Here we report the
discovery of gaseous CO via the 1.3mm wavelength J=2-1 rotational transition,
and find that the line-centre signal is more than twice as bright as a
tentative result obtained by Bockelee-Morvan et al. in 2000. Greater
surface-ice evaporation over the last decade could explain this, or increased
pressure could have caused the atmosphere to expand. The gas must be cold, with
a narrow line-width consistent with temperatures around 50 K, as predicted for
the very high atmosphere, and the line brightness implies that CO molecules
extend up to approximately 3 Pluto radii above the surface. The upper
atmosphere must have changed markedly over only a decade since the prior
search, and more alterations could occur by the arrival of the New Horizons
mission in 2015.Comment: 5 pages; accepted for publication in MNRAS Letter
Fractal Properties of Robust Strange Nonchaotic Attractors in Maps of Two or More Dimensions
We consider the existence of robust strange nonchaotic attractors (SNA's) in
a simple class of quasiperiodically forced systems. Rigorous results are
presented demonstrating that the resulting attractors are strange in the sense
that their box-counting dimension is N+1 while their information dimension is
N. We also show how these properties are manifested in numerical experiments.Comment: 9 pages, 14 figure
Generalized Theorems for Nonlinear State Space Reconstruction
Takens' theorem (1981) shows how lagged variables of a single time series can be used as proxy variables to reconstruct an attractor for an underlying dynamic process. State space reconstruction (SSR) from single time series has been a powerful approach for the analysis of the complex, non-linear systems that appear ubiquitous in the natural and human world. The main shortcoming of these methods is the phenomenological nature of attractor reconstructions. Moreover, applied studies show that these single time series reconstructions can often be improved ad hoc by including multiple dynamically coupled time series in the reconstructions, to provide a more mechanistic model. Here we provide three analytical proofs that add to the growing literature to generalize Takens' work and that demonstrate how multiple time series can be used in attractor reconstructions. These expanded results (Takens' theorem is a special case) apply to a wide variety of natural systems having parallel time series observations for variables believed to be related to the same dynamic manifold. The potential information leverage provided by multiple embeddings created from different combinations of variables (and their lags) can pave the way for new applied techniques to exploit the time-limited, but parallel observations of natural systems, such as coupled ecological systems, geophysical systems, and financial systems. This paper aims to justify and help open this potential growth area for SSR applications in the natural sciences
Molecular gas in the Andromeda galaxy
We present a new 12CO(J=1-0)-line survey of the Andromeda galaxy, M31,
covering the bright disk with the highest resolution to date (85 pc along the
major axis), observed On-the-Fly (in italics) with the IRAM 30-m telescope. We
discuss the distribution of the CO emission and compare it with the
distributions of HI and emission from cold dust traced at 175mum. Our main
results are: 1. Most of the CO emission comes from the radial range R=3-16 kpc,
but peaks near R=10 kpc. The emission is con- centrated in narrow, arm-like
filaments defining two spiral arms with pitch angles of 7d-8d. The average
arm-interarm brightness ratio along the western arms reaches 20 compared to 4
for HI. 2. For a constant conversion factor Xco, the molecular fraction of the
neutral gas is enhanced in the arms and decreases radially. The apparent
gas-to-dust ratios N(HI)/I175 and (N(HI)+2N(H2))/I175 increase by a factor of
20 between the centre and R=14 kpc, whereas the ratio 2N(H2)/I175 only
increases by a factor of 4. Implications of these gradients are discussed. In
the range R=8-14 kpc total gas and cold dust are well correlated; molecular gas
is better correlated with cold dust than atomic gas.Comment: 21 pages, 16 figures. Accepted for publication in A&
Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions
The internally electrodynamic (IED) particle model was derived based on
overall experimental observations, with the IED process itself being built
directly on three experimental facts, a) electric charges present with all
material particles, b) an accelerated charge generates electromagnetic waves
according to Maxwell's equations and Planck energy equation and c) source
motion produces Doppler effect. A set of well-known basic particle equations
and properties become predictable based on first principles solutions for the
IED process; several key solutions achieved are outlined, including the de
Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass,
Einstein mass-energy relation, Newton's law of gravity, single particle self
interference, and electromagnetic radiation and absorption; these equations and
properties have long been broadly experimentally validated or demonstrated. A
specific solution also predicts the Doebner-Goldin equation which emerges to
represent a form of long-sought quantum wave equation including gravity. A
critical review of the key experiments is given which suggests that the IED
process underlies the basic particle equations and properties not just
sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes
We present a new scheme for determining the shape of the size distribution,
and its evolution, for collisional cascades of planetesimals undergoing
destructive collisions and loss processes like Poynting-Robertson drag. The
scheme treats the steady state portion of the cascade by equating mass loss and
gain in each size bin; the smallest particles are expected to reach steady
state on their collision timescale, while larger particles retain their
primordial distribution. For collision-dominated disks, steady state means that
mass loss rates in logarithmic size bins are independent of size. This
prescription reproduces the expected two phase size distribution, with ripples
above the blow-out size, and above the transition to gravity-dominated
planetesimal strength. The scheme also reproduces the expected evolution of
disk mass, and of dust mass, but is computationally much faster than evolving
distributions forward in time. For low-mass disks, P-R drag causes a turnover
at small sizes to a size distribution that is set by the redistribution
function (the mass distribution of fragments produced in collisions). Thus
information about the redistribution function may be recovered by measuring the
size distribution of particles undergoing loss by P-R drag, such as that traced
by particles accreted onto Earth. Although cross-sectional area drops with
1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining
the importance of understanding which particle sizes contribute to an
observation when considering how disk detectability evolves. Other loss
processes are readily incorporated; we also discuss generalised power law loss
rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical
Astronomy (special issue on EXOPLANETS
- …