394 research outputs found

    L-selectin mediated leukocyte tethering in shear flow is controlled by multiple contacts and cytoskeletal anchorage facilitating fast rebinding events

    Full text link
    L-selectin mediated tethers result in leukocyte rolling only above a threshold in shear. Here we present biophysical modeling based on recently published data from flow chamber experiments (Dwir et al., J. Cell Biol. 163: 649-659, 2003) which supports the interpretation that L-selectin mediated tethers below the shear threshold correspond to single L-selectin carbohydrate bonds dissociating on the time scale of milliseconds, whereas L-selectin mediated tethers above the shear threshold are stabilized by multiple bonds and fast rebinding of broken bonds, resulting in tether lifetimes on the timescale of 10−110^{-1} seconds. Our calculations for cluster dissociation suggest that the single molecule rebinding rate is of the order of 10410^4 Hz. A similar estimate results if increased tether dissociation for tail-truncated L-selectin mutants above the shear threshold is modeled as diffusive escape of single receptors from the rebinding region due to increased mobility. Using computer simulations, we show that our model yields first order dissociation kinetics and exponential dependence of tether dissociation rates on shear stress. Our results suggest that multiple contacts, cytoskeletal anchorage of L-selectin and local rebinding of ligand play important roles in L-selectin tether stabilization and progression of tethers into persistent rolling on endothelial surfaces.Comment: 9 pages, Revtex, 4 Postscript figures include

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    The Homeobox Transcription Factor Barx2 Regulates Plasticity of Young Primary Myofibers

    Get PDF
    Adult mammalian muscle retains incredible plasticity. Muscle growth and repair involves the activation of undifferentiated myogenic precursors called satellite cells. In some circumstances, it has been proposed that existing myofibers may also cleave and produce a pool of proliferative cells that can re-differentiate into new fibers. Such myofiber dedifferentiation has been observed in the salamander blastema where it may occur in parallel with satellite cell activation. Moreover, ectopic expression of the homeodomain transcription factor Msx1 in differentiated C2C12 myotubes has been shown to induce their dedifferentiation. While it remains unclear whether dedifferentiation and redifferentiaton occurs endogenously in mammalian muscle, there is considerable interest in induced dedifferentiation as a possible regenerative tool.We previously showed that the homeobox protein Barx2 promotes myoblast differentiation. Here we report that ectopic expression of Barx2 in young immature myotubes derived from cell lines and primary mouse myoblasts, caused cleavage of the syncytium and downregulation of differentiation markers. Microinjection of Barx2 cDNA into immature myotubes derived from primary cells led to cleavage and formation of mononucleated cells that were able to proliferate. However, injection of Barx2 cDNA into mature myotubes did not cause cleavage. Barx2 expression in C2C12 myotubes increased the expression of cyclin D1, which may promote cell cycle re-entry. We also observed differential muscle gene regulation by Barx2 at early and late stages of muscle differentiation which may be due to differential recruitment of transcriptional activator or repressor complexes to muscle specific genes by Barx2.We show that Barx2 regulates plasticity of immature myofibers and might act as a molecular switch controlling cell differentiation and proliferation

    Barriers to formal healthcare utilisation among poor older people under the livelihood empowerment against poverty programme in the Atwima Nwabiagya District of Ghana

    Get PDF
    Abstract: Background: Even though there is a growing literature on barriers to formal healthcare use among older people, little is known from the perspective of vulnerable older people in Ghana. Involving poor older people under the Livelihood Empowerment Against Poverty (LEAP) programme, this study explores barriers to formal healthcare use in the Atwima Nwabiagya District of Ghana. Methods: Interviews and focus group discussions were conducted with 30 poor older people, 15 caregivers and 15 formal healthcare providers in the Atwima Nwabiagya District of Ghana. Data were analysed using the thematic analytical framework, and presented based on an a posteriori inductive reduction approach. Results: Four main barriers to formal healthcare use were identified: physical accessibility barriers (poor transport system and poor architecture of facilities), economic barriers (low income coupled with high charges, and non-comprehensive nature of the National Health Insurance Scheme [NHIS]), social barriers (communication/language difficulties and poor family support) and unfriendly nature of healthcare environment barriers (poor attitude of healthcare providers). Conclusions: Considering these barriers, removing them would require concerted efforts and substantial financial investment by stakeholders. We argue that improvement in rural transport services, implementation of free healthcare for poor older people, strengthening of family support systems, recruitment of language translators at the health facilities and establishment of attitudinal change programmes would lessen barriers to formal healthcare use among poor older people. This study has implications for health equity and health policy framework in Ghana

    Principles of cartilage tissue engineering in TMJ reconstruction

    Get PDF
    Diseases and defects of the temporomandibular joint (TMJ), compromising the cartilaginous layer of the condyle, impose a significant treatment challenge. Different regeneration approaches, especially surgical interventions at the TMJ's cartilage surface, are established treatment methods in maxillofacial surgery but fail to induce a regeneration ad integrum. Cartilage tissue engineering, in contrast, is a newly introduced treatment option in cartilage reconstruction strategies aimed to heal cartilaginous defects. Because cartilage has a limited capacity for intrinsic repair, and even minor lesions or injuries may lead to progressive damage, biological oriented approaches have gained special interest in cartilage therapy. Cell based cartilage regeneration is suggested to improve cartilage repair or reconstruction therapies. Autologous cell implantation, for example, is the first step as a clinically used cell based regeneration option. More advanced or complex therapeutical options (extracorporeal cartilage engineering, genetic engineering, both under evaluation in pre-clinical investigations) have not reached the level of clinical trials but may be approached in the near future. In order to understand cartilage tissue engineering as a new treatment option, an overview of the biological, engineering, and clinical challenges as well as the inherent constraints of the different treatment modalities are given in this paper

    Competitive Interactions between Invasive Nile Tilapia and Native Fish: The Potential for Altered Trophic Exchange and Modification of Food Webs

    Get PDF
    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important
    • …
    corecore