1,180 research outputs found

    Noise Effects on the Complex Patterns of Abnormal Heartbeats

    Full text link
    Patients at high risk for sudden death often exhibit complex heart rhythms in which abnormal heartbeats are interspersed with normal heartbeats. We analyze such a complex rhythm in a single patient over a 12-hour period and show that the rhythm can be described by a theoretical model consisting of two interacting oscillators with stochastic elements. By varying the magnitude of the noise, we show that for an intermediate level of noise, the model gives best agreement with key statistical features of the dynamics.Comment: 4 pages, 4 figures, RevTe

    Testing for sexually transmitted infections in general practice: cross-sectional study

    Get PDF
    Background: Primary care is an important provider of sexual health care in England. We sought to explore the extent of testing for chlamydia and HIV in general practice and its relation to associated measures of sexual health in two contrasting geographical settings.Methods: We analysed chlamydia and HIV testing data from 64 general practices and one genitourinary medicine (GUM) clinic in Brent (from mid-2003 to mid-2006) and 143 general practices and two GUM clinics in Avon (2004). We examined associations between practice testing status, practice characteristics and hypothesised markers of population need (area level teenage conception rates and Index of Multiple Deprivation, IMD scores).Results: No HIV or chlamydia testing was done in 19% (12/64) of general practices in Brent, compared to 2.1% (3/143) in Avon. In Brent, the mean age of general practitioners (GPs) in Brent practices that tested for chlamydia or HIV was lower than in those that had not conducted testing. Practices where no HIV testing was done had slightly higher local teenage conception rates (median 23.5 vs. 17.4/1000 women aged 15-44, p = 0.07) and served more deprived areas (median IMD score 27.1 vs. 21.8, p = 0.05). Mean yearly chlamydia and HIV testing rates, in practices that did test were 33.2 and 0.6 (per 1000 patients aged 15-44 years) in Brent, and 34.1 and 10.3 in Avon, respectively. In Brent practices only 20% of chlamydia tests were conducted in patients aged under 25 years, compared with 39% in Avon.Conclusions: There are substantial geographical differences in the intensity of chlamydia and HIV testing in general practice. Interventions to facilitate sexually transmitted infection and HIV testing in general practice are needed to improve access to effective sexual health care. The use of routinely-collected laboratory, practice-level and demographic data for monitoring sexual health service provision and informing service planning should be more widely evaluated

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    Silicon-based spin and charge quantum computation

    Full text link
    Silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals due to the relatively long spin coherence times. For these spin qubits, donor electron charge manipulation by external gates is a key ingredient for control and read-out of single-qubit operations, while shallow donor exchange gates are frequently invoked to perform two-qubit operations. More recently, charge qubits based on tunnel coupling in P2+_2^+ substitutional molecular ions in Si have also been proposed. We discuss the feasibility of the building blocks involved in shallow donor quantum computation in silicon, taking into account the peculiarities of silicon electronic structure, in particular the six degenerate states at the conduction band edge. We show that quantum interference among these states does not significantly affect operations involving a single donor, but leads to fast oscillations in electron exchange coupling and on tunnel-coupling strength when the donor pair relative position is changed on a lattice-parameter scale. These studies illustrate the considerable potential as well as the tremendous challenges posed by donor spin and charge as candidates for qubits in silicon.Comment: Review paper (invited) - to appear in Annals of the Brazilian Academy of Science

    How Geography Curricula Tackle Global Issues

    Get PDF
    The late Doreen Massey recently urged teachers to ‘take on the world’ (Massey, 2014). Though we may see the everyday world as a mosaic of different places, nations or regions defined by their boundaries, a global understanding brings different perspectives: of flows and networks and interdependencies. If we take this seriously - if we do take on the world - then young people need ideas in order to provide new ways of seeing and thinking. Geography in this sense is a disciplinary resource that provides access to a particular form of powerful knowledge: in short, the means to be able to ‘think geographically’. This chapter opens up and presents this argument. In the first part we provide a platform in the form of analysis of geography curricula from three countries, identifying both the potentials and the challenges that teachers face. Where is ‘the global’, we ask, and in what ways do formal curriculum documents inspire or constrain us from ‘taking on the world’? The second part seeks to develop a disciplinary view of the school subject, appealing to the sometimes beguiling notion of powerful knowledge. We end by introducing a capabilities approach to thinking about the school subject which demonstrates the responsibility that inevitably falls to well-prepared teachers to enact the curriculum

    Advanced Imaging Modalities to Monitor for Cardiotoxicity

    Get PDF
    OPINION STATEMENT: Early detection and treatment of cardiotoxicity from cancer therapies is key to preventing a rise in adverse cardiovascular outcomes in cancer patients. Over-diagnosis of cardiotoxicity in this context is however equally hazardous, leading to patients receiving suboptimal cancer treatment, thereby impacting cancer outcomes. Accurate screening therefore depends on the widespread availability of sensitive and reproducible biomarkers of cardiotoxicity, which can clearly discriminate early disease. Blood biomarkers are limited in cardiovascular disease and clinicians generally still use generic screening with ejection fraction, based on historical local expertise and resources. Recently, however, there has been growing recognition that simple measurement of left ventricular ejection fraction using 2D echocardiography may not be optimal for screening: diagnostic accuracy, reproducibility and feasibility are limited. Modern cancer therapies affect many myocardial pathways: inflammatory, fibrotic, metabolic, vascular and myocyte function, meaning that multiple biomarkers may be needed to track myocardial cardiotoxicity. Advanced imaging modalities including cardiovascular magnetic resonance (CMR), computed tomography (CT) and positron emission tomography (PET) add improved sensitivity and insights into the underlying pathophysiology, as well as the ability to screen for other cardiotoxicities including coronary artery, valve and pericardial diseases resulting from cancer treatment. Delivering screening for cardiotoxicity using advanced imaging modalities will however require a significant change in current clinical pathways, with incorporation of machine learning algorithms into imaging analysis fundamental to improving efficiency and precision. In the future, we should aspire to personalized rather than generic screening, based on a patient's individual risk factors and the pathophysiological mechanisms of the cancer treatment they are receiving. We should aspire that progress in cardiooncology is able to track progress in oncology, and to ensure that the current 'one size fits all' approach to screening be obsolete in the very near future

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    The physics of dynamical atomic charges: the case of ABO3 compounds

    Full text link
    Based on recent first-principles computations in perovskite compounds, especially BaTiO3, we examine the significance of the Born effective charge concept and contrast it with other atomic charge definitions, either static (Mulliken, Bader...) or dynamical (Callen, Szigeti...). It is shown that static and dynamical charges are not driven by the same underlying parameters. A unified treatment of dynamical charges in periodic solids and large clusters is proposed. The origin of the difference between static and dynamical charges is discussed in terms of local polarizability and delocalized transfers of charge: local models succeed in reproducing anomalous effective charges thanks to large atomic polarizabilities but, in ABO3 compounds, ab initio calculations favor the physical picture based upon transfer of charges. Various results concerning barium and strontium titanates are presented. The origin of anomalous Born effective charges is discussed thanks to a band-by-band decomposition which allows to identify the displacement of the Wannier center of separated bands induced by an atomic displacement. The sensitivity of the Born effective charges to microscopic and macroscopic strains is examined. Finally, we estimate the spontaneous polarization in the four phases of barium titanate.Comment: 25 pages, 6 Figures, 10 Tables, LaTe

    Discussion on 'Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation'. Journal of the Geological Society, https://doi.org/10.1144/jgs2016-063

    Get PDF
    The first-order importance of tectonic and environmental controls for terrigenous sediment supply has rarely been questioned, but the role of vegetation in the modification of ancient alluvial signatures has been observed since the mid-20th century (Vogt 1941). Studies of sparsely vegetated rivers (Schumm 1968) and alluvial stratigraphic variation (Cotter 1978; Davies & Gibling 2010) led to observations of (1) plant modulation of alluvial signatures and (2) Palaeozoic facies shifts (PFS): unidirectional changes to facies diversity and frequency, in stratigraphic alliance with the plant fossil record. One PFS is the Siluro-Devonian appearance of mud-rich, architecturally complex alluvium, traditionally ascribed to meandering rivers, and sedimentologically distinct from pre-vegetation strata (Davies & Gibling 2010; Long 2011). Using selected secondary data, Santos et al. (2017) dispute the correlation of these observations using three key points, as follows. (1) The mid-Palaeozoic was typified by orogenic assembly of low-gradient equatorial continents and elevated sea-level, which led to tropical weathering (abundant fine sediment) and extensive alluvial plains. This drove the PFS by promoting river meandering independently of vegetation. (2) Meandering does not require vegetation; this is shown by examples in Precambrian deposits, on other planets, and in ‘non-vegetated’ deserts. Meandering rivers were more abundant than the pre-vegetation rock record suggests, owing to selective bypass and deflation of fine material. (3) Early Siluro-Devonian (meaning Ludlow–Early Devonian) land plants were too small, their biomass and cover too limited, and their wetland habitat too narrow to have stabilized meandering channels, influencing landscape little more than earlier microbial communities. We contest the conclusions and method of the paper, and deal with each point in turn

    Quantum Tunneling in the Wigner Representation

    Get PDF
    Time dependence for barrier penetration is considered in the phase space. An asymptotic phase-space propagator for nonrelativistic scattering on a one - dimensional barrier is constructed. The propagator has a form universal for various initial state preparations and local potential barriers. It is manifestly causal and includes time-lag effects and quantum spreading. Specific features of quantum dynamics which disappear in the standard semi-classical approximation are revealed. The propagator may be applied to calculation of the final momentum and coordinate distributions, for particles transmitted through or reflected from the potential barrier, as well as for elucidating the tunneling time problem.Comment: 18 pages, LATEX, no figure
    • …
    corecore