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Opinion statement

Early detection and treatment of cardiotoxicity from cancer therapies is key to
preventing a rise in adverse cardiovascular outcomes in cancer patients. Over-
diagnosis of cardiotoxicity in this context is however equally hazardous, leading
to patients receiving suboptimal cancer treatment, thereby impacting cancer out-
comes. Accurate screening therefore depends on the widespread availability of
sensitive and reproducible biomarkers of cardiotoxicity, which can clearly
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discriminate early disease. Blood biomarkers are limited in cardiovascular disease
and clinicians generally still use generic screening with ejection fraction, based on
historical local expertise and resources. Recently, however, there has been growing
recognition that simple measurement of left ventricular ejection fraction using 2D
echocardiography may not be optimal for screening: diagnostic accuracy, reproduc-
ibility and feasibility are limited. Modern cancer therapies affect many myocardial
pathways: inflammatory, fibrotic, metabolic, vascular and myocyte function, mean-
ing that multiple biomarkers may be needed to track myocardial cardiotoxicity.
Advanced imaging modalities including cardiovascular magnetic resonance (CMR),
computed tomography (CT) and positron emission tomography (PET) add improved
sensitivity and insights into the underlying pathophysiology, as well as the ability
to screen for other cardiotoxicities including coronary artery, valve and pericardial
diseases resulting from cancer treatment. Delivering screening for cardiotoxicity
using advanced imaging modalities will however require a significant change in
current clinical pathways, with incorporation of machine learning algorithms into
imaging analysis fundamental to improving efficiency and precision. In the future,
we should aspire to personalized rather than generic screening, based on a patient’s
individual risk factors and the pathophysiological mechanisms of the cancer treat-
ment they are receiving. We should aspire that progress in cardiooncology is able to
track progress in oncology, and to ensure that the current ‘one size fits all’ approach
to screening be obsolete in the very near future.

Introduction

With more than 14 million new diagnoses of cancer in
2018 alone [1] and with half of patients expected to live
for 10 years or more, the importance of healthy survi-
vorship in oncology is increasingly important. Improved
survival rates alongside the wealth of novel therapies
prescribed to older patients with more co-morbidities
have resulted in greater incidence of cardiac complica-
tions during cancer treatments, which then negatively
impact cancer outcomes. Early detection and treatment
of emergent cardiotoxicity has been shown to both re-
duce cardiovascular adverse events [2], and enable better
treatment of the underlying cancer. However, over-
cautious diagnosis and management from a cardiac per-
spective in this context may prevent patients from re-
ceiving optimal cancer treatment, thereby impacting on
remission and survival rates.

Cardiooncology is a rapidly developing subspe-
cialty within cardiology which aims to optimize di-
agnosis and management of cardiac complications of
cancer treatment [3, 4]. Unfortunately our under-
standing of the underlying pathophysiology and nat-
ural history of cardiotoxicity remains limited, and it
is generally only detected once cardiovascular disease

presents clinically [5, 6]. Over the past decade, the
armoury of anti-cancer therapies has expanded enor-
mously [7], many of which are targeted therapies
based on tumour genetic and receptor profiles, rather
than simply tumour location. Unfortunately these
are accompanied by a growing range of cardiovascu-
lar sequelae, including not only heart failure and left
ventricular systolic dysfunction (cancer therapeutics–
related cardiac dysfunction, CTRCD) but also myo-
carditis, arrhythmias, thrombotic events, coronary,
pericardial and valvular heart disease. Recognition
of these cardiovascular effects has led to screening
being incorporated into both clinical pathways and
research trials. However, how this is best achieved
and with which imaging biomarkers and modalities
remains controversial . Cardiac imaging has
progressed significantly over the past two decades,
and advanced echocardiographic techniques includ-
ing three dimensional imaging, cardiovascular mag-
netic resonance (CMR) imaging, computed tomogra-
phy (CT) and nuclear techniques including positron
emission tomography (PET) have the potential to
improve diagnostic accuracy of screening and offer
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an insight into the underlying pathophysiology of
cardiotoxicity.

The decision to employ one imaging modality over
another depends on several factors, including the tech-
nical and professional resources available, financial
costs, patient preferences and modality-specific advan-
tages and limitations (Table 1). An ideal imaging bio-
marker should be accurate and precise (with excellent
inter-study reproducibility for serial screening), give an
insight into the underlying pathophysiology and have
sufficient sensitivity to detect disease before it becomes
clinically apparent. This has been recognized in the

context of cardiotoxicity for many years [8], but now
more than ever the additional considerations of cost,
availability and safety (lack of ionizing radiation) have
governed decision making, rendering adoption of ad-
vanced imagingmodalities in routine clinical workflows
more challenging.

The focus of this review is to give an overview on the
use of advanced imaging modalities for cardiotoxicity
monitoring, focusing on their diagnostic capabilities
and limitations as well as their potential future
applications.

Monitoring for cancer treatment–related cardiac dysfunction

The cardiotoxic effects of anthracyclines and trastuzumab on cardiac function
have long been recognized; however, many of the newer targeted therapies
including tyrosine kinase inhibitors and immunotherapy are also associated
with cardiac dysfunction. Baseline assessment of cardiac structure and function
prior to initiating potentially cardiotoxic cancer treatments is essential, particu-
larly in those at higher risk [9••, 10••, 11••, 12••, 13••, 14]. This is both an
important component of initial risk assessment prior to start treatment, but also
avoids inappropriately ascribing abnormalities detected during treatment to the
therapy, in patients with pre-existing cardiomyopathies.

Left ventricular ejection fraction (LVEF) is the principal marker of left
ventricular systolic function currently used both in clinical practice and research,
and early asymptomatic declines are associated with subsequent progression to
clinical heart failure in the context of cancer treatment [15–17]. Serial imaging is
therefore recommended before, during (for HER2-targeted treatments) and on
completion of treatment with anthracycline or other cardiotoxic agents. Cancer
therapeutics–related cardiac dysfunction (CTRCD) has been defined as a drop
in LVEF 9 10% to below the lower limits of normal, although different absolute
cut off values of abnormal LVEF are used [10••, 11••, 14, 18]. Reliable detec-
tion of CTRCD therefore depends not only on the sensitivity and accuracy of the
imaging method to detect subtle changes in LVEF but also the ability to
discriminate true changes in ejection fraction between studies from background
noise (precision). This is determined by limitations in image quality and intra-
and inter-observer reproducibility [19].

Echocardiography is recommended first line for cardiotoxicity screening by
all of the current published oncology and cardiology guidelines [9••, 10••,
11••, 12••, 13••, 14]. There are inherent advantages to the technique: low-cost,
widespread availability, lack of ionizing radiation and patient acceptability;
however, the accuracy of 2D echocardiography is limited by its reliance on
geometric assumptions and adequate acoustic windows (potentially worse in
cancer patients, for example post-mastectomy). Test-retest variability in LVEF
measurement by 2D echocardiography is however up to 10% [19, 20] and it has
been questionedwhether it can reliably detect the 5–10% change used to define
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CTRCD [21]. The use of transpulmonary contrast results in a higher level of
precision than 2D alone, especially when windows are limited [22] and forms
part of international LV assessment guidelines [23]. 3D echocardiography is a
more precise method for measurement of LV volume and function against a
gold standard of CMR [24–27]. Unfortunately, however, it is feasible in only
60% of patients post-anthracycline chemotherapy for breast cancer [28], due to
poor echocardiographic windows in this population

Multigated acquisition (MUGA) scans [29] have historically been widely
used for LVEF evaluation, and were the imaging modality of choice in clinical
trials of anthracycline cardiotoxicity in the 1980s due to widespread availability
[15]. Despite good intra- and inter-observer reproducibility [30], measures of
LVEF by MUGA are only modestly accurate when compared with a gold
standard of CMR, with misclassification of 35% of subjects when cardiotoxicity
was diagnosed using a LVEF threshold of 50% [31]. MUGA is further limited by
both the associated radiation exposure, and the limited information it provides
on other cardiac structures. Single-photon emission computed tomography
(SPECT) enables acquisition of 3D images and provides an additional option
for LVEF evaluation. It can provide information on right ventricle function and
wall motion abnormalities; however, it tends to underestimate LVEF values
compared to MUGA and echocardiography [32]. Positron emission tomogra-
phy (PET) is unlikely to have a widespread role in screening for cardiotoxicity
despite its accuracy [33], because of high cost and radiation exposure along with
limited availability.

CMR imaging is now the gold standard for evaluation of ventricular vol-
umes and function [34], with proven superior reproducibility for LVEF assess-
ment [35]. LVEF is calculated from a stack of short axis cine images of the heart,
with the endocardial borders segmented either manually or automatically at
end-diastole and end-systole, in order to provide the cavity areas for each slice.
Summation of the slice areas enables calculation of the LV end-diastolic and
end-systolic volume, from which ejection fraction can be calculated. With
temporal variability in LVEF measurements estimated at 2.4 to 7.3% [20, 36]
and without the constraints of reliance on acoustic windows, CMR is well-
suited for monitoring for cardiotoxicity, particularly in those whose echocar-
diographic images are suboptimal [37]. The enhanced reproducibility of CMR
over echocardiography for detecting small changes in LVEF translates into the
potential for smaller sample sizes in clinical studies. CMR-derived measures of
LVEF are now commonly used as the endpoint in randomized trials evaluating
the value of cardioprotective agents for prevention of cardiotoxicity [38, 39].
Importantly, CMR also provides additional information on LV structure param-
eters such as LV mass, which has been shown to independently predict cardio-
vascular events in patients following anthracycline therapy [40]. Although both
access to and costs of CMR have historically limited its use, rapid CMR proto-
cols [41], 10 or 20 min, can be adapted to cardiooncology, enabling cheaper,
shorter scans that can deliver improved efficiency.

Imaging biomarkers of early subclinical CTRCD

Management of heart failure secondary to cancer therapies can be challenging if
diagnosed late, with prognosis historically worse with anthracycline-related
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cardiomyopathy than other aetiologies of heart failure [42]. By the time a drop
in LVEF is detected, the opportunity for maximal therapeutic intervention may
have already been missed [43]. Data from 2625 patients followed during and
after treatment with anthracyclines showed that the incidence of cardiotoxicity
was 9%, with 98% of cases arising within the first year following treatment, of
whom the majority had at least partial recovery if treatment was started early
[44]. Alongside this, histological data has found significant myocellular injury
on biopsy despite preserved ejection fraction, suggesting that LVEF may be a
relatively late marker of cardiotoxicity [45].

Although echocardiographic markers of diastolic function including tissue
Doppler velocities have been explored in early cardiotoxicity, studies show con-
flicting results [46, 47] [48]. Stress imaging has also been explored as a potential
tool for early detection of cardiotoxicity [49]. Stress echocardiography was shown
todetect subclinical cardiac dysfunction in young adults treatedwith anthracyclines
[50], but the incremental value of stress echocardiography and the role of contrac-
tile reserve in cardiotoxicity monitoring remains unclear [51, 52]. Myocardial
deformation using left ventricular (LV) strain, strain rate and twist [53–55] by
echocardiography are more sensitive and earlier biomarkers of cardiotoxicity than
LVEF, and permit detection of cardiotoxicity at lower chemotherapy doses than
were historically believed to be associated with cardiac damage [56]. A relative
reduction of peak LV systolic global longitudinal strain (GLS) by 10 to 15% is an
early predictor of subsequent cardiotoxicity [57–59], and 3D GLS may detect
cardiotoxicity earlier than 2D GLS [60, 61]. The ongoing SUCCOUR trial [62] will
be the first randomized controlled study using GLS as a predictive biomarker for
CTRCD, and the results will likely impact clinical practice.

More recently, CMR-derived GLS (using feature tracking) has been shown to
detect LV dysfunction before LVEF falls [63] and to be an independent predictor
of all-cause mortality across all cardiomyopathies [64]. Reductions in both
global circumferential and longitudinal strain have been demonstrated in
patients receiving doxorubicin and trastuzumab, which correlated with changes
in subclinical declines in LVEF [65–67], highlighting its potential use for
monitoring of early cardiotoxicity from chemotherapy.

Imaging biomarkers to understand the pathophysiology of CTRCD

Left ventricular dysfunction is the most frequent final manifestation of
cardiotoxicity, but may result from a variety of different, treatment-specific,
pathophysiological mechanisms [68] including myocyte apoptosis [69], myo-
cardial fibrosis, inflammation [70] and ischaemia [71]. An ideal imaging bio-
marker would interrogate individual pathways directly, to detect cardiotoxicity
prior to the development of myocardial mechanical dysfunction. Furthermore,
the introduction of new therapies targeting different treatment pathways, in-
cluding novel immunomodulatory strategies such as adoptive T cell therapy
(ACT) and immune checkpoint inhibitors (ICI), has resulted in new and less
well-defined mechanisms of injury to the heart, often resulting in a wide
spectrum of toxicity and clinical presentations, ranging from asymptomatic
detection of elevated cardiac biomarkers to cardiogenic shock [72, 73]. Ad-
vanced imaging offers the potential for tissue characterisation, and hence the
ability to detect myocardial oedema and inflammation, focal and diffuse
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fibrosis and assess myocardial perfusion.
CMR adds value because of itsmyocardial tissue characterisation capabilities

with growing evidence within cardiooncology (Fig. 1). Gadolinium-based con-
trast agents can be administered to detect focal myocardial scarring and fibrosis,
and the distribution and extent of myocardial scar can be used both to differ-
entiate aetiologies of myocardial disease (for example ischaemic cardiomyop-
athy versus myocarditis) and to estimate prognosis [74, 75]. Although experi-
mental models of anthracycline cardiotoxicity [76] demonstrated focal scarring
on late gadolinium enhancement (LGE) imaging, clinical studies suggest LGE is
rarely detected, and is not associated with outcomes [77, 78]. Rather than focal
scarring, anthracyclines are thought to cause diffuse interstitial fibrosis, via
excess collagen deposition. Diffuse fibrosis can be quantified by CMR using

Fig. 1. Multiparametric cardiac evaluation using CMR. a–d Cardiac function and volumetric assessment: Endocardial and epicardial
borders are drawn in diastole (a) and systole (b) allowing calculation of LVEF, chamber volumes and myocardial mass. Measurement
of myocardial deformation using feature tracking CMR (c) enables measurement of global longitudinal strain (GLS), a marker of
early, subclinical cardiotoxicity (d). e–j Tissue characterisation: Quantitative parametric mapping techniques such as T1 (e), T2 (f)
and extracellular volume (ECV) mapping , (i) detect and measure diffuse myocardial fibrosis and oedema. Late gadolinium
enhancement imaging (g,h) identifies focal fibrosis, and can differentiate between underling pathologies such as myocarditis
(subepicardial, g) and infarction (subendocardial, h). Intracardiac masses (j, arrow), here in the superior vena cava and the right
atrium, can be identified and tissue characterisation enables stratification of the underlying tissue type. k–l Myocardial perfusion
imaging can assess for functionally significant coronary artery disease and aid risk stratification pre-cancer treatment or surgery.
Here, a region of relative hypo-perfusion (k, outlined myocardium) is seen with vasodilator stress, with reduced myocardial blood
flow at 0.85 ml/g/min demonstrated on the quantitative perfusion map (l), related to circumflex territory ischaemia.
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pre- and post-contrast T1 mapping, and this technique has been validated
against biopsy-measured collagen volume fraction with good reproducibility
across a spectrum of other cardiac disorders [79, 80]. T1 mapping has been
explored as a biomarker of early anthracycline cardiotoxicity, with several small
studies showing elevated myocardial T1 and extracellular volume fraction
(ECV) in patients treated with anthracyclines compared with age- and sex-
matched controls [81, 82]. Other studies have however failed to reproduce
these results [78, 83], particularly in lower risk patients. This conflicting data
therefore means that, at least currently, T1 mapping is not a tool for
anthracycline- or HER2-related mainstream cardiotoxicity screening.

CMR can also detect myocardial oedema and inflammation using T2-
weighted imaging sequences, with higher T2 relaxation times seenwith increasing
myocardial water content. Parametric mapping techniques have been developed
to quantify T2 relaxation times, and recent data from a pigmodel of doxorubicin-
induced cardiotoxicity using serial multiparametric (T1, T2 and ECV) mapping
has shown that T2 values provide the earliest marker of myocardial damage
[84•]. Myocardial T2 values increased early following administration of
anthracyclines, correlating with increase myocardial water content, despite nor-
mal T1 and ECV values and no detectable abnormalities in myocardial contrac-
tility. On stopping anthracycline administration when T2 levels increased, T2
values normalized and LV dysfunction did not progress, suggesting that
cardiotoxicity may be largely reversible when detected at this early stage. Albeit
from animal data with intra-coronary chemotherapy injection, this study pro-
vides evidence that T2 imaging may be a potential early imaging biomarker for
cardiotoxicity with anthracyclines. T1 and T2mapping techniques are also useful
for the diagnosis andmonitoring of myocarditis, which has been associated with
various cancer agents, with increasing recognition in the context of immunother-
apies [85]. Although there is insufficient data currently available to clarify the role
of CMR in immunotherapy-related myocarditis, it is likely that the ability of this
modality to detect both oedema and fibrosis will deliver clinical utility.

PET imaging can detect alterations in myocardial metabolism and inflam-
mation [86], offering good sensitivity for the diagnosis of myocarditis and
therefore potentially other cardiotoxicities. PET data [87] suggests that changes
in myocardial glucose metabolism can be detected early in the course of
anthracycline treatment, with low baseline myocardial 18F-FDG uptake
predicting a progressive increase in cardiac glucose consumption during and
after chemotherapy, as well as a higher incidence of cardiotoxicity [88].

Evaluation of coronary artery disease and myocardial ischaemia

Whilst cardiotoxicity related to cancer therapy generally focuses on left ventric-
ular impairment [89], cancer treatments can cause other clinical cardiac syn-
dromes including coronary events, pericardial disease, valvular heart disease,
pulmonary hypertension and right ventricular dysfunction [90–94] (Table 2).

Several cancer treatments have been implicated in the development of myocar-
dial ischaemia and coronary events including myocardial infarction, including
fluoropyrimidines, platinum compounds, VEGF inhibitors, certain bcr-abl tyrosine
kinase inhibitors and radiotherapy [10••] (Table 2). Pathophysiological mecha-
nisms differ by drug and include accelerated atherosclerosis, coronary spasm,
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vascular endothelial damage and arterial thrombotic events. Most cardiac imaging
modalities including echocardiography, CMR and nuclear imaging can be used for
functional testing in this context, with exercise or stress agents including adenosine,
regadenoson and dobutamine used to unmask ischaemia or myocardial perfusion
abnormalities. There are small differences in the diagnostic performance of these
tests [95]; however, the selection of an individual modality is generally based on
local expertise and availability. CMR can sensitively detect myocardial infarction
using LGE, and quantitative myocardial perfusion mapping offers the potential to
directly quantify regional myocardial perfusion reserve [96], previously only feasi-
ble with nuclear imaging techniques. CT coronary angiography provides a non-
invasive anatomical assessment of coronary artery disease, and with an excellent
negative predictive value can offer a reliable test for exclusion of significant coro-
nary disease and for risk stratificationprior to surgery or administrationof the drugs
listed above.

Valvular heart disease

Valve disease is a rare complication of chemotherapy, however is well-
recognized as a late consequence of high-dose radiotherapy to themediastinum
(particularly with historical techniques such as mantle field radiotherapy).
There is a latent interval of 10–20 years between radiation exposure and
development of clinically significant heart valve disease, with risk related both
to radiation dose and interval from exposure, with reported prevalence rates of
5–32% in patients treated for Hodgkins lymphoma [97]. Importantly, surgical
outcomes in these patients are worse than in a matched cohort of patients
undergoing valve replacement [98], meaning that early detection and accurate
assessment is critical, with non-surgical, percutaneous valve implantation ap-
proaches playing an increasing role [99].

Echocardiography remains both the first-line and gold standard imaging
modality for functional assessment of valvular heart disease, allowing qualita-
tive and quantitative evaluation of both stenotic and regurgitant valves. Com-
puted tomography and CMR [100] can also be used for valve evaluation, with
the former being useful for stenotic valve planimetry and evaluation of
suspected endocarditis [101], particularly when hybrid imaging such as PET-
CT is employed [102]. CMR canmeasure flow across valves using phase contrast
imaging, and hence is often employed where echocardiographic assessments
are of poor quality or uncertain [103].

Pericardial disease

Pericardial disease is a common finding with cancer therapy, and pericar-
ditis, pericardial effusion and constrictive pericarditis are all seen associat-
ed with both chemotherapy agents (including anthracyclines, cytarabine,
arsenic and tyrosine kinase inhibitors), and mediastinal radiotherapy
[104]. Pericarditis can arise acutely during radiotherapy, leading to later
pericardial constriction which typically presents over 10 years following
treatment and has a cumulative incidence of up to 5% in this population
[10••]. Echocardiography is the first-line imaging modality for pericardial
assessment, including diagnosis and functional characterisation of
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constrictive and tamponade physiology, whilst CT is able to reliably detect
the pericardial calcification generally seen as a late complication of radio-
therapy. CMR offers additional diagnostic information, combining both
sensitive structural imaging (using dark blood T1 weighted imaging with
and without fat saturation) with tissue characterisation (multiparametric
mapping and LGE) and functional assessment (real-time cine imaging
during free breathing) for more detailed investigation of pericardial dis-
ease [105]. This can be particularly useful where echocardiography is
inconclusive, or where more detailed tissue characterisation is required.
Formal diagnosis and evaluation of constrictive pericarditis can be chal-
lenging, and a clinical role remains for invasive cardiac catheterisation with
haemodynamic assessment in some circumstances.

Pulmonary hypertension

Although a rare complication of cancer therapy, development of pulmonary
hypertension has been observed with dasanitib (Bruton’s kinase inhibitor used
in chronic myeloid leukaemia where prevalence of pulmonary hypertension
(PAH) is 5%), cyclophosphomide and other alkylating agents [106, 107].
Echocardiography is preferred as the initial imaging modality with repeated
assessment every 3–6 months recommended in patients receiving PAH-
associated therapy [10••].

Cardiac masses

Whilst echocardiography is generally the initial modality to detect cardiac
masses (and is best for small, rapidly-moving masses including valve vegeta-
tions), assessing for tissue invasion and for differentiating mass aetiology
generally requires advanced imaging techniques. CT has the spatial resolution
to accurately determine the location, size and relationship of the mass to tissue
planes, but CMR plays a key role [108, 109] in helping evaluate between
different types of mass due to its inherent tissue characterisation sequences.
After locating a mass on dark and bright blood sequences, T1- and T2-weighted
imaging techniques, early and late gadolinium imaging and rest perfusion
imaging can help determine the aetiology and potential resectability of the
mass. Thrombi (common on indwelling venous catheters) can be easily detect-
ed using early gadolinium imaging, and malignant tumours are more likely to
have heterogeneous signal intensity, cross tissue planes, and enhance on LGE
and rest perfusion imaging [110]. Whilst a definitive malignant tissue diagnosis
is rarely possible, key benign aetiologies can be detected (cysts, lipoma, throm-
bus). PET/CT imaging also has a role in differentiating benign from malignant
tumours, and for detecting cardiac metastases [111] although careful patient
preparation is key to obtaining diagnostic cardiac imaging.

Light chain cardiac amyloidosis

Patients with myeloma and other haematological malignancies rarely develop
light chain amyloidosis, which may present with cardiac amyloidosis—an
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infiltrative cardiomyopathy, often presenting as heart failure with preserved
ejection fraction (HFPEF). The diagnosis is often suspected from the character-
istic echocardiographic appearances of left ventricular hypertrophy, preserved
LV function, impaired RV function and profound apical sparing on strain maps
[112]. Endomyocardial biopsy, whilst a definitive test if positive, carries inher-
ent risks due to its invasive nature,meaning that a non-invasive diagnostic test is
needed. CMR findings in cardiac amyloid are characteristic and can be used as
prognostic markers, with left ventricular hypertrophy, abnormal gadolinium
kinetics, subendocardial or transmural late gadolinium enhancement and sig-
nificantly elevatedmyocardial T1 and ECV levels often detected in patients with
cardiac involvement [113]. Nuclear bone scintigraphy techniques (using 99mTc-
PYP and 99mTc-DPD) can help differentiate light chain (AL) from transthyretin
amyloidosis and a novel PET radiotracer (18F-florbetapir) [114] has recently
been shown to be of potential value for detecting and quantifying AL amyloid
in the heart.

Conclusions

Improved outcomes in oncology mean that it is increasingly important to
prevent, detect and treat any early signs of treatment-related cardiotoxicity so
patients can receive optimal cancer treatment but minimize subsequent cardio-
vascular morbidity and mortality. Advanced cardiac imaging techniques offer
more sensitive and reproducible screening options than conventional 2D echo-
cardiography or MUGA, and may provide novel insights into the underlying
pathophysiology of CTRCD. The development of novel cancer treatments is
currently rapid, and often cardiotoxicity is not detected until after initial phase 1
and 2 safety trials [115], with the causativemechanisms poorly understood. The
need for accurate cardiac imaging biomarkers is therefore greater than ever,
meaning that provision and access to CT, CMR and nuclear imaging will require
expansion to match the growing demand from cardiooncology.
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