322 research outputs found
Duloxetine in the treatment of major depressive disorder: an open-label study
<p>Abstract</p> <p>Background</p> <p>Major depressive disorder (MDD) is a chronic and highly disabling condition. Existing pharmacotherapies produce full remission in only 30% to 40% of treated patients. Antidepressants exhibiting dual reuptake inhibition of both serotonin (5-HT) and norepinephrine (NE) may achieve higher rates of remission compared with those acting upon a single neurotransmitter. In this study, the safety and efficacy of duloxetine, a potent dual reuptake inhibitor of 5-HT and NE, were examined.</p> <p>Methods</p> <p>Patients (N = 533) meeting DSM-IV criteria for MDD received open-label duloxetine (60 mg once a day [QD]) for 12 weeks during the initial phase of a relapse prevention trial. Patients were required to have a 17-item Hamilton Rating Scale for Depression (HAMD<sub>17</sub>) total score ≥18 and a Clinical Global Impression of Severity (CGI-S) score ≥4 at baseline. Efficacy measures included the HAMD<sub>17 </sub>total score, HAMD<sub>17 </sub>subscales, the CGI-S, the Patient Global Impression of Improvement (PGI-I) scale, Visual Analog Scales (VAS) for pain, and the Symptom Questionnaire, Somatic Subscale (SQ-SS). Quality of life was assessed using the Sheehan Disability Scale (SDS) and the Quality of Life in Depression Scale (QLDS). Safety was evaluated by recording spontaneously-reported treatment-emergent adverse events, changes in vital signs and laboratory analytes, and the Patient Global Impression of Sexual Function (PGI-SF) scale.</p> <p>Results</p> <p>The rate of discontinuation due to adverse events was 11.3%. Treatment-emergent adverse events reported by ≥10% duloxetine-treated patients were nausea, headache, dry mouth, somnolence, insomnia, and dizziness. Following 12 weeks of open-label duloxetine therapy, significant improvements were observed in all assessed efficacy and quality of life measures. In assessments of depression severity (HAMD<sub>17</sub>, CGI-S) the magnitude of symptom improvement continued to increase at each study visit, while for painful physical symptoms the onset of improvement was rapid and reached a maximum after 2 to 3 weeks of treatment.</p> <p>Conclusion</p> <p>In this open-label phase of a relapse prevention study, duloxetine (60 mg QD) was shown to be safe and effective in the treatment of MDD.</p> <p>Trial registration</p> <p>NCT00036309.</p
Impaired decisional impulsivity in pathological videogamers
Abstract
Background
Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort.
Methods
Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment.
Results
In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time.
Conclusions
We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management
Blastocystis hominis and Endolimax nana Co-Infection Resulting in Chronic Diarrhea in an Immunocompetent Male
Blastocystis hominis and Endolimax nana exist as two separate parasitic organisms; however co-infection with the two individual parasites has been well documented. Although often symptomatic in immunocompromised individuals, the pathogenicity of the organisms in immunocompetent subjects causing gastrointestinal symptoms has been debated, with studies revealing mixed results. Clinically, both B. hominis and E. nana infection may result in acute or chronic diarrhea, generalized abdominal pain, nausea, vomiting, flatulence and anorexia. We report the case of a 24-year-old immunocompetent male presenting with chronic diarrhea and abdominal pain secondary to B. hominis and E. nana treated with metronidazole, resulting in symptom resolution and eradication of the organisms. Our case illustrates that clinicians should be cognizant of both B. hominis and E. nana infection as a cause of chronic diarrhea in an immunocompetent host. Such awareness will aid in a timely diagnosis and possible parasitic eradication with resolution of gastrointestinal symptoms
Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans
DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 � 10?6). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability
Dual requirement of cytokine and activation receptor triggering for cytotoxic control of murine cytomegalovirus by NK cells
Natural killer (NK) cells play a critical role in controlling murine cytomegalovirus (MCMV) and can mediate both cytokine production and direct cytotoxicity. The NK cell activation receptor, Ly49H, is responsible for genetic resistance to MCMV in C57BL/6 mice. Recognition of the viral m157 protein by Ly49H is sufficient for effective control of MCMV infection. Additionally, during the host response to infection, distinct immune and non-immune cells elaborate a variety of pleiotropic cytokines which have the potential to impact viral pathogenesis, NK cells, and other immune functions, both directly and indirectly. While the effects of various immune deficiencies have been examined for general antiviral phenotypes, their direct effects on Ly49H-dependent MCMV control are poorly understood. To specifically interrogate Ly49H-dependent functions, herein we employed an in vivo viral competition approach to show Ly49H-dependent MCMV control is specifically mediated through cytotoxicity but not IFNγ production. Whereas m157 induced Ly49H-dependent degranulation, efficient cytotoxicity also required either IL-12 or type I interferon (IFN-I) which acted directly on NK cells to produce granzyme B. These studies demonstrate that both of these distinct NK cell-intrinsic mechanisms are integrated for optimal viral control by NK cells
Long-term cognitive outcomes in tuberous sclerosis complex.
AIM: To investigate the interdependence between risk factors associated with long-term intellectual development in individuals with tuberous sclerosis complex (TSC). METHOD: The Tuberous Sclerosis 2000 Study is a prospective longitudinal study of individuals with TSC. In phase 1 of the study, baseline measures of intellectual ability, epilepsy, cortical tuber load, and mutation were obtained for 125 children (63 females, 62 males; median age=39mo). In phase 2, at an average of 8 years later, intellectual abilities were estimated for 88 participants with TSC and 35 unaffected siblings. Structural equation modelling was used to determine the risk pathways from genetic mutation through to IQ at phase 2. RESULTS: Intellectual disability was present in 57% of individuals with TSC. Individuals without intellectual disability had significantly lower mean IQ compared to unaffected siblings, supporting specific genetic factors associated with intellectual impairment. Individuals with TSC who had a slower gain in IQ from infancy to middle childhood were younger at seizure onset and had increased infant seizure severity. Structural equation modelling indicated indirect pathways from genetic mutation, to tuber count, to seizure severity in infancy, through to IQ in middle childhood and adolescence. INTERPRETATION: Early-onset and severe epilepsy in the first 2 years of life are associated with increased risk of long-term intellectual disability in individuals with TSC, emphasizing the importance of early and effective treatment or prevention of epilepsy. WHAT THIS PAPER ADDS: Intellectual disability was present in 57% of individuals with tuberous sclerosis complex (TSC). Those with TSC without intellectual disability had significantly lower mean IQ compared to unaffected siblings. Earlier onset and greater severity of seizures in the first 2 years were observed in individuals with a slower gain in intellectual ability. Risk pathways through seizures in the first 2 years predict long-term cognitive outcomes in individuals with TSC
Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2
<p>Abstract</p> <p>Background</p> <p>Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2). The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade.</p> <p>Methods</p> <p>Proliferation of L6 rat skeletal myoblasts stimulated with PAR-2 agonists (tryptase, trypsin and SLIGKV) was assessed. The specificity of the tryptase effect was evaluated with a specific inhibitor, APC-366. Western blot analyses were used to evaluate the expression and functionality of PAR-2 receptor and to assess the expression of COX-2. COX-2 activity was evaluated with a commercial activity assay kit and by measurement of PGF<sub>2</sub>α production. Proliferation assays were also performed in presence of different prostaglandins (PGs).</p> <p>Results</p> <p>Tryptase increased L6 myoblast proliferation by 35% above control group and this effect was completely inhibited by APC-366. We confirmed the expression of PAR-2 receptor <it>in vivo </it>in skeletal muscle cells and in satellite cells and <it>in vitro </it>in L6 cells, where PAR-2 was found to be functional. Trypsin and SLIGKV increased L6 cells proliferation by 76% and 26% above control, respectively. COX-2 activity was increased following stimulation with PAR-2 agonist but its expression remained unchanged. Inhibition of COX-2 activity by NS-398 abolished the stimulation of cell proliferation induced by tryptase and trypsin. Finally, 15-deoxy-Δ-<sup>12,14</sup>-prostaglandin J<sub>2 </sub>(15Δ-PGJ<sub>2</sub>), a product of COX-2-derived prostaglandin D<sub>2</sub>, stimulated myoblast proliferation, but not PGE<sub>2 </sub>and PGF<sub>2</sub>α.</p> <p>Conclusions</p> <p>Taken together, our data show that tryptase can stimulate myoblast proliferation and this effect is part of a signaling cascade dependent on PAR-2 activation and on the downstream activation of COX-2.</p
- …