403 research outputs found

    Changes in age composition and growth characteristics of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) over 400 years

    Get PDF
    Populations of sturgeon (Acipenseridae) have experienced global declines, and in some cases extirpation, during the past century. In the current era of climate change and over-harvesting of fishery resources, climate models, based on uncertain boundary conditions, are being used to predict future effects on the Earth\u27s biota. A collection of approximately 400-year-old Atlantic sturgeon spines from a midden in colonial Jamestown, VA, USA, allowed us to compare the age structure and growth rate for a pre-industrial population during a \u27mini-ice age\u27 with samples collected from the modern population in the same reach of the James River. Compared with modern fish, the colonial population was characterized by larger and older individuals and exhibited significantly slower growth rates, which were comparable with modern populations at higher latitudes of North America. These results may relate to higher population densities and/or colder water temperatures during colonial times

    Thoracic aortopathy in Turner syndrome and the influence of bicuspid aortic valves and blood pressure: a CMR study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p/> <p>To investigate aortic dimensions in women with Turner syndrome (TS) in relation to aortic valve morphology, blood pressure, karyotype, and clinical characteristics.</p> <p>Methods and results</p> <p>A cross sectional study of 102 women with TS (mean age 37.7; 18-62 years) examined by cardiovascular magnetic resonance (CMR- successful in 95), echocardiography, and 24-hour ambulatory blood pressure. Aortic diameters were measured by CMR at 8 positions along the thoracic aorta. Twenty-four healthy females were recruited as controls. In TS, aortic dilatation was present at one or more positions in 22 (23%). Aortic diameter in women with TS and bicuspid aortic valve was significantly larger than in TS with tricuspid valves in both the ascending (32.4 ± 6.7 vs. 26.0 ± 4.4 mm; p < 0.001) and descending (21.4 ± 3.5 vs. 18.8 ± 2.4 mm; p < 0.001) aorta. Aortic diameter correlated to age (R = 0.2 - 0.5; p < 0.01), blood pressure (R = 0.4; p < 0.05), a history of coarctation (R = 0.3; p = 0.01) and bicuspid aortic valve (R = 0.2-0.5; p < 0.05). Body surface area only correlated with descending aortic diameter (R = 0.23; p = 0.024).</p> <p>Conclusions</p> <p/> <p>Aortic dilatation was present in 23% of adult TS women, where aortic valve morphology, age and blood pressure were major determinants of the aortic diameter.</p

    Immunocytochemical determination of the subcellular distribution of ascorbate in plants

    Get PDF
    Ascorbate is an important antioxidant in plants and fulfills many functions related to plant defense, redox signaling and modulation of gene expression. We have analyzed the subcellular distribution of reduced and oxidized ascorbate in leaf cells of Arabidopsis thaliana and Nicotiana tabacum by high-resolution immuno electron microscopy. The accuracy and specificity of the applied method is supported by several observations. First, preadsorption of the ascorbate antisera with ascorbic acid or dehydroascorbic acid resulted in the reduction of the labeling to background levels. Second, the overall labeling density was reduced between 50 and 61% in the ascorbate-deficient Arabidopsis mutants vtc1-2 and vtc2-1, which correlated well with biochemical measurements. The highest ascorbate-specific labeling was detected in nuclei and the cytosol whereas the lowest levels were found in vacuoles. Intermediate labeling was observed in chloroplasts, mitochondria and peroxisomes. This method was used to determine the subcellular ascorbate distribution in leaf cells of plants exposed to high light intensity, a stress factor that is well known to cause an increase in cellular ascorbate concentration. High light intensities resulted in a strong increase in overall labeling density. Interestingly, the strongest compartment-specific increase was found in vacuoles (fourfold) and in plastids (twofold). Ascorbate-specific labeling was restricted to the matrix of mitochondria and to the stroma of chloroplasts in control plants but was also detected in the lumen of thylakoids after high light exposure. In summary, this study reveals an improved insight into the subcellular distribution of ascorbate in plants and the method can now be applied to determine compartment-specific changes in ascorbate in response to various stress situations

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Genetic Ablation of Bcl-x Attenuates Invasiveness without Affecting Apoptosis or Tumor Growth in a Mouse Model of Pancreatic Neuroendocrine Cancer

    Get PDF
    Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-xL, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic β-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-xL upon exogenous over-expression

    Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>uPAR and MMP-9, which play critical roles in tumor cell invasion, migration and angiogenesis, have been shown to be associated with lipid rafts.</p> <p>Methods</p> <p>To investigate whether cholesterol could regulate uPAR and MMP-9 in breast carcinoma, we used MβCD (methyl beta cyclodextrin, which extracts cholesterol from lipid rafts) to disrupt lipid rafts and studied its effect on breast cancer cell migration, invasion, angiogenesis and signaling.</p> <p>Results</p> <p>Morphological evidence showed the association of uPAR with lipid rafts in breast carcinoma cells. MβCD treatment significantly reduced the colocalization of uPAR and MMP-9 with lipid raft markers and also significantly reduced uPAR and MMP-9 at both the protein and mRNA levels. Spheroid migration and invasion assays showed inhibition of breast carcinoma cell migration and invasion after MβCD treatment. <it>In vitro </it>angiogenesis studies showed a significant decrease in the angiogenic potential of cells pretreated with MβCD. MβCD treatment significantly reduced the levels of MMP-9 and uPAR in raft fractions of MDA-MB-231 and ZR 751 cells. Phosphorylated forms of Src, FAK, Cav, Akt and ERK were significantly inhibited upon MβCD treatment. Increased levels of soluble uPAR were observed upon MβCD treatment. Cholesterol supplementation restored uPAR expression to basal levels in breast carcinoma cell lines. Increased colocalization of uPAR with the lysosomal marker LAMP1 was observed in MβCD-treated cells when compared with untreated cells.</p> <p>Conclusion</p> <p>Taken together, our results suggest that cholesterol levels in lipid rafts are critical for the migration, invasion, and angiogenesis of breast carcinoma cells and could be a critical regulatory factor in these cancer cell processes mediated by uPAR and MMP-9.</p

    Evidence of maternal QTL affecting growth and obesity in adult mice

    Get PDF
    Most quantitative trait loci (QTL) studies fail to account for the effect that the maternal genotype may have on an individual’s phenotypes, even though maternal effect QTL have been shown to account for considerable variation in growth and obesity traits in mouse models. Moreover, the fetal programming theory suggests that maternal effects influence an offspring’s adult fitness, although the genetic nature of fetal programming remains unclear. Within this context, our study focused on mapping genomic regions associated with maternal effect QTL by analyzing the phenotypes of chromosomes 2 and 7 subcongenic mice from genetically distinct dams. We analyzed 12 chromosome 2 subcongenic strains that spanned from 70 to 180 Mb with CAST/EiJ donor regions on the background of C57BL/6 J, and 14 chromosome 7 subcongenic strains that spanned from 81 to 111 Mb with BALB/cByJ donor regions on C57BL/6ByJ background. Maternal QTL analyses were performed on the basis of overlapping donor regions between subcongenic strains. We identified several highly significant (P < 5 × 10−4) maternal QTL influencing total body weight, organ weight, and fat pad weights in both sets of subcongenics. These QTL accounted for 1.9-11.7% of the phenotypic variance for growth and obesity and greatly narrowed the genomic regions associated with the maternal genetic effects. These maternal effect QTL controlled phenotypic traits in adult mice, suggesting that maternal influences at early stages of development may permanently affect offspring performance. Identification of maternal effects in our survey of two sets of subcongenic strains, representing approximately 5% of the mouse genome, supports the hypothesis that maternal effects represent significant sources of genetic variation that are largely ignored in genetic studies

    Institutional shared resources and translational cancer research

    Get PDF
    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate
    corecore