2,349 research outputs found
Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers
Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and
polarization noise of light propagating in glass fibers. This excess noise
affects the performance of various experiments operating at the quantum noise
limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic
crystal fiber in a broad frequency range using cavity sound dynamics. We
compare the noise spectrum to the one of a standard fiber and observe a 10-fold
noise reduction in the frequency range up to 200 MHz. Based on our measurement
results as well as on numerical simulations we establish a model for the
reduction of GAWBS noise in photonic crystal fibers.Comment: 4 pages, 7 figures; added numerical simulations, added reference
Staging superstructures in high- Sr/O co-doped LaSrCuO
We present high energy X-ray diffraction studies on the structural phases of
an optimal high- superconductor LaSrCuO tailored by
co-hole-doping. This is specifically done by varying the content of two very
different chemical species, Sr and O, respectively, in order to study the
influence of each. A superstructure known as staging is observed in all
samples, with the staging number increasing for higher Sr dopings . We
find that the staging phases emerge abruptly with temperature, and can be
described as a second order phase transition with transition temperatures
slightly depending on the Sr doping. The Sr appears to correlate the
interstitial oxygen in a way that stabilises the reproducibility of the staging
phase both in terms of staging period and volume fraction in a specific sample.
The structural details as investigated in this letter appear to have no direct
bearing on the electronic phase separation previously observed in the same
samples. This provides new evidence that the electronic phase separation is
determined by the overall hole concentration rather than specific Sr/O content
and concommittant structural details.Comment: 8 pages, incl. 4 figure
Hybrid-Entanglement in Continuous Variable Systems
Entanglement is one of the most fascinating features arising from
quantum-mechanics and of great importance for quantum information science. Of
particular interest are so-called hybrid-entangled states which have the
intriguing property that they contain entanglement between different degrees of
freedom (DOFs). However, most of the current continuous variable systems only
exploit one DOF and therefore do not involve such highly complex states. We
break this barrier and demonstrate that one can exploit squeezed cylindrically
polarized optical modes to generate continuous variable states exhibiting
entanglement between the spatial and polarization DOF. We show an experimental
realization of these novel kind of states by quantum squeezing an azimuthally
polarized mode with the help of a specially tailored photonic crystal fiber
Accurate masses and radii of normal stars: modern results and applications
This paper presents and discusses a critical compilation of accurate,
fundamental determinations of stellar masses and radii. We have identified 95
detached binary systems containing 190 stars (94 eclipsing systems, and alpha
Centauri) that satisfy our criterion that the mass and radius of both stars be
known to 3% or better. To these we add interstellar reddening, effective
temperature, metal abundance, rotational velocity and apsidal motion
determinations when available, and we compute a number of other physical
parameters, notably luminosity and distance. We discuss the use of this
information for testing models of stellar evolution. The amount and quality of
the data also allow us to analyse the tidal evolution of the systems in
considerable depth, testing prescriptions of rotational synchronisation and
orbital circularisation in greater detail than possible before. The new data
also enable us to derive empirical calibrations of M and R for single (post-)
main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff),
log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively.
Excellent agreement is found with independent determinations for host stars of
transiting extrasolar planets, and good agreement with determinations of M and
R from stellar models as constrained by trigonometric parallaxes and
spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23
interferometric binaries with masses known to better than 3%, but without
fundamental radius determinations (except alpha Aur). We discuss the prospects
for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and
Astrophysics Review. Ascii versions of the tables will appear in the online
version of the articl
A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system
We present a tight-binding potential for transition metals, carbon, and
transition metal carbides, which has been optimized through a systematic
fitting procedure. A minimal basis, including the s, p electrons of carbon and
the d electrons of the transition metal, is used to obtain a transferable
tight-binding model of the carbon-carbon, metal-metal and metal-carbon
interactions applicable to binary systems. The Ni-C system is more specifically
discussed. The successful validation of the potential for different atomic
configurations indicates a good transferability of the model and makes it a
good choice for atomistic simulations sampling a large configuration space.
This approach appears to be very efficient to describe interactions in systems
containing carbon and transition metal elements
Interrelation between the pseudogap and the incoherent quasi-particle features of high-Tc superconductors
Using a scenario of a hybridized mixture of localized bipolarons and
conduction electrons, we demonstrate for the latter the simultaneous appearance
of a pseudogap and of strong incoherent contributions to their quasi-particle
spectrum which arise from phonon shake-off effects. This can be traced back to
temporarily fluctuating local lattice deformations, giving rise to a
double-peak structure in the pair distribution function, which should be a key
feature in testing the origin of these incoherent contributions, recently seen
in angle-resolved photoemission spectroscopy (ARPES).Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let
Absence of the zero bias peak in vortex tunneling spectra of high temperature superconductors?
The c-axis tunneling matrix of high-Tc superconductors is shown to depend
strongly on the in-plane momentum of electrons and vanish along the four nodal
lines of the d(x^2-y^2)-wave energy gap. This anisotropic tunneling matrix
suppresses completely the contribution of the most extended quasiparticles in
the vortex core to the c-axis tunneling current and leads to a spectrum similar
to that of a nodeless superconductor. Our results give a natural explanation of
the absence of the zero bias peak as well as other features observed in the
vortex tunneling spectra of high-Tc cuprates.Comment: 4 pages 3 figures, minor corrections, to appear in Phys Rev
Sub shot noise phase quadrature measurement of intense light beams
We present a setup to perform sub shot noise measurements of the phase
quadrature for intense pulsed light without the use of a separate local
oscillator. A Mach--Zehnder interferometer with an unbalanced arm length is
used to detect the fluctuations of the phase quadrature at a single side band
frequency. Using this setup, the non--separability of a pair of quadrature
entangled beams is demonstrated experimentally.Comment: 9 pages, 2 figures, accepted for publication in Optics Letter
- …
