2 research outputs found

    Differential gene expression in male and female rainbow trout embryos prior to the onset of gross morphological differentiation of the gonads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are large differences between the sexes at the genetic level; these differences include heterogametic sex chromosomes and/or differences in expression of genes between the sexes. In rainbow trout (<it>Oncorhynchus mykiss</it>) qRT-PCR studies have found significant differences in expression of several candidate sex determining genes. However, these genes represent a very small fraction of the genome and research in other species suggests there are large portions of the transcriptome that are differentially expressed between the sexes. These differences are especially noticeable once gonad differentiation and maturation has occurred, but less is known at earlier stages of development. Here we use data from a microarray and qRT-PCR to identify genes differentially expressed between the sexes at three time points in pre-hatch embryos, prior to the known timing of sexual differentiation in this species.</p> <p>Results</p> <p>The microarray study revealed 883 differentially expressed features between the sexes with roughly equal numbers of male and female upregulated features across time points. Most of the differentially expressed genes on the microarray were not related to sex function, suggesting large scale differences in gene expression between the sexes are present early in development. Candidate gene analysis revealed <it>sox9</it>, <it>DMRT1</it>, <it>Nr5a1 </it>and <it>wt1 </it>were upregulated in males at some time points and <it>foxl2</it>, <it>ovol1</it>, <it>fst </it>and <it>cyp19a1a </it>were upregulated in females at some time points.</p> <p>Conclusion</p> <p>This is the first study to identify sexual dimorphism in expression of the genome during embryogenesis in any fish and demonstrates that transcriptional differences are present before the completion of gonadogenesis.</p

    Current and Future Assisted Reproductive Technologies for Fish Species

    No full text
    corecore