28 research outputs found

    On the Perception of Newcomers: Toward an Evolved Psychology of Intergenerational Coalitions

    Get PDF
    Human coalitions frequently persist through multiple, overlapping membership generations, requiring new members to cooperate and coordinate with veteran members. Does the mind contain psychological adaptations for interacting within these intergenerational coalitions? In this paper, we examine whether the mind spontaneously treats newcomers as a motivationally privileged category. Newcomers—though capable of benefiting coalitions—may also impose considerable costs (e.g., they may free ride on other members, they may be poor at completing group tasks). In three experiments we show (1) that the mind categorizes coalition members by tenure, including newcomers; (2) that tenure categorization persists in the presence of orthogonal and salient social dimensions; and (3) that newcomers elicit a pattern of impressions consistent with their probable ancestral costs. These results provide preliminary evidence for a specialized component of human coalitional psychology: an evolved concept of newcomer

    Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma

    Get PDF
    The expression of laminin and fibronectin isoforms varies with cellular maturation and differentiation and these differences may well influence cellular processes such as adhesion and motility. The basement membrane (BM) of fetal oral squamous epithelium contains the laminin chains, α2, α3, α5, β1, β2, β3, γ1 and γ2. The BM of adult normal oral squamous epithelium comprises the laminin chains, α3, α5, β1, β3, γ1 and γ2. A re-expression of the laminin α2 and β2 chains could be shown in adult hyperproliferative, dysplastic and carcinomatous lesions. In dysplasia and oral squamous cell carcinoma (OSCC), multifocal breaks of the BM are present as indicated by laminin chain antibodies. These breaks correlate to malignancy grade in their extent. Moreover, in the invasion front the α3 and γ2 chain of laminin-5 can immunohistochemically be found outside the BM within the cytoplasm of budding carcinoma cells and in the adjacent stroma. The correlation between the morphological pattern of invasive tumour clusters and a laminin-5 immunostaining in the adjacent stroma may suggest, first, that a laminin-5 deposition outside the BM is an immunohistochemical marker for invasion and second, that OSCC invasion is guided by the laminin-5 matrix. Expression of oncofetal fibronectins (IIICS de novo glycosylated fibronectin and ED-B fibronectin) could be demonstrated throughout the stromal compartment. However, the ED-B fibronectin synthesizing cells (RNA/RNA in situ hybridization) are confined to small stroma areas and to single stroma and inflammatory cells in the invasion front. A correlation of the number of ED-B fibronectin synthesizing cells to malignancy grade could not be seen. ED-B fibronectin mRNA-positive cells seem to be concentrated in areas of fibrous stroma recruitment with a linear alignment of stromal fibro-/myofibroblasts (desmoplasia). Double staining experiments (ED-B fibronectin in situ hybridization and α-smooth muscle actin immunohistochemistry) indicated that the stroma myofibroblasts are a preferential source of ED-B fibronectin. In conclusion, in OSCC, a fetal extracellular matrix conversion is demonstrable. Tumour cells (laminin α2 and β2 chain) and recruited stromal myofibroblasts (oncofetal ED-B fibronectin) contribute to the fetal extracellular matrix milieu. © 1999 Cancer Research Campaig

    Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems

    Get PDF
    Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model

    Integrin alpha 11 in the regulation of the myofibroblast phenotype: implications for fibrotic diseases

    Get PDF
    Tissue fibrosis, characterized by excessive accumulation of aberrant extracellular matrix (ECM) produced by myofibroblasts, is a growing cause of mortality worldwide. Understanding the factors that induce myofibroblastic differentiation is paramount to prevent or reverse the fibrogenic process. Integrin-mediated interaction between the ECM and cytoskeleton promotes myofibroblast differentiation. In the present study, we explored the significance of integrin alpha 11 (ITGA11), the integrin alpha subunit that selectively binds to type I collagen during tissue fibrosis in the liver, lungs and kidneys. We showed that ITGA11 was co-localized with α-smooth muscle actin-positive myofibroblasts and was correlatively induced with increasing fibrogenesis in mouse models and human fibrotic organs. Furthermore, transcriptome and protein expression analysis revealed that ITGA11 knockdown in hepatic stellate cells (liver-specific myofibroblasts) markedly reduced transforming growth factor β-induced differentiation and fibrotic parameters. Moreover, ITGA11 knockdown dramatically altered the myofibroblast phenotype, as indicated by the loss of protrusions, attenuated adhesion and migration, and impaired contractility of collagen I matrices. Furthermore, we demonstrated that ITGA11 was regulated by the hedgehog signaling pathway, and inhibition of the hedgehog pathway reduced ITGA11 expression and fibrotic parameters in human hepatic stellate cells in vitro, in liver fibrosis mouse model in vivo and in human liver slices ex vivo. Therefore, we speculated that ITGA11 might be involved in fibrogenic signaling and might act downstream of the hedgehog signaling pathway. These findings highlight the significance of the ITGA11 receptor as a highly promising therapeutic target in organ fibrosis

    Fibroblast α11β1 Integrin Regulates Tensional Homeostasis in Fibroblast/A549 Carcinoma Heterospheroids

    Get PDF
    We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy
    corecore