1,548 research outputs found

    Constraining protoplanetary disc evolution using accretion rate and disc mass measurements: the usefulness of the dimensionless accretion parameter

    Get PDF
    We explore how measurements of protoplanetary disc masses and accretion rates provided by surveys of star-forming regions can be analysed via the dimensionless accretion parameter\textit{dimensionless accretion parameter}, which we define as the product of the accretion rate and stellar age divided by the disc mass. By extending and generalizing the study of Jones et al., we demonstrate that this parameter should be less than or of order unity for a wide range of evolutionary scenarios, rising above unity only during the final stages of outside-in clearing by external photoevaporation. We use this result to assess the reliability of disc mass estimates derived from CO isotopologues and sub-mm continuum emission by examining the distribution of accretion efficiencies in regions that are not subject to external photoevaporation. We find that while dust-based mass estimates produce results compatible with theoretical expectations assuming a canonical dust-to-gas ratio, the systematically lower CO-based estimates yield accretion efficiencies significantly above unity in contrast with the theory. This finding provides additional evidence that CO-based disc masses are an underestimate, in line with arguments that have been made on the basis of chemical modelling of relatively small samples. On the other hand, we demonstrate that dust-based mass estimates are sufficiently accurate to reveal distinctly higher accretion efficiencies in the Trapezium cluster, where this result is expected, given the evident importance of external photoevaporation. We therefore propose the dimensionless accretion parameter as a new diagnostic of external photoevaporation in other star-forming regions.This work has been supported by the DISCSIM project, grant agreement 341137, funded by the European Research Council under ERC-2013-ADG. CFM gratefully acknowledges an ESA Research Fellowship

    Human COQ9 Rescues a coq9 Yeast Mutant by Enhancing Coenzyme Q Biosynthesis from 4-Hydroxybenzoic Acid and Stabilizing the CoQ-Synthome

    Get PDF
    Coq9 is required for the stability of a mitochondrial multi-subunit complex, termed the CoQ-synthome, and the deamination step of Q intermediates that derive from para-aminobenzoic acid (pABA) in yeast. In human, mutations in the COQ9 gene cause neonatal-onset primary Q10 deficiency. In this study, we determined whether expression of human COQ9 could complement yeast coq9 point or null mutants. We found that expression of human COQ9 rescues the growth of the temperature-sensitive yeast mutant, coq9-ts19, on a non-fermentable carbon source and increases the content of Q6, by enhancing Q biosynthesis from 4-hydroxybenzoic acid (4HB). To study the mechanism for the rescue by human COQ9, we determined the steady-state levels of yeast Coq polypeptides in the mitochondria of the temperature-sensitive yeast coq9 mutant expressing human COQ9. We show that the expression of human COQ9 significantly increased steady-state levels of yeast Coq4, Coq6, Coq7, and Coq9 at permissive temperature. Human COQ9 polypeptide levels persisted at non-permissive temperature. A small amount of the human COQ9 co-purified with tagged Coq6, Coq6-CNAP, indicating that human COQ9 interacts with the yeast Q-biosynthetic complex. These findings suggest that human COQ9 rescues the yeast coq9 temperature-sensitive mutant by stabilizing the CoQ-synthome and increasing Q biosynthesis from 4HB. This finding provides a powerful approach to studying the function of human COQ9 using yeast as a model

    Focused Deterrence and the Prevention of Violent Gun Injuries: Practice, Theoretical Principles, and Scientific Evidence

    Get PDF
    Focused deterrence strategies are a relatively new addition to a growing portfolio of evidence-based violent gun injury prevention practices available to policy makers and practitioners. These strategies seek to change offender behavior by understanding the underlying violence-producing dynamics and conditions that sustain recurring violent gun injury problems and by implementing a blended strategy of law enforcement, community mobilization, and social service actions. Consistent with documented public health practice, the focused deterrence approach identifies underlying risk factors and causes of recurring violent gun injury problems, develops tailored responses to these underlying conditions, and measures the impact of implemented interventions. This article reviews the practice, theoretical principles, and evaluation evidence on focused deterrence strategies. Although more rigorous randomized studies are needed, the available empirical evidence suggests that these strategies generate noteworthy gun violence reduction impacts and should be part of a broader portfolio of violence prevention strategies available to policy makers and practitioners

    Wanted dead or alive : high diversity of macroinvertebrates associated with living and ’dead’ Posidonia oceanica matte

    Get PDF
    The Mediterranean endemic seagrass Posidonia oceanica forms beds characterised by a dense leaf canopy and a thick root-rhizome ‘matte’. Death of P. oceanica shoots leads to exposure of the underlying matte, which can persist for many years, and is termed ‘dead’ matte. Traditionally, dead matte has been regarded as a degraded habitat. To test whether this assumption was true, the motile macroinvertebrates of adjacent living (with shoots) and dead (without shoots) matte of P. oceanica were sampled in four different plots located at the same depth (5–6 m) in Mellieha Bay, Malta (central Mediterranean). The total number of species and abundance were significantly higher (ANOVA; P<0.05 and P<0.01, respectively) in the dead matte than in living P. oceanica matte, despite the presence of the foliar canopy in the latter. Multivariate analysis (MDS) clearly showed two main groups of assemblages, corresponding to the two matte types. The amphipods Leptocheirus guttatus and Maera grossimana, and the polychaete Nereis rava contributed most to the dissimilarity between the two different matte types. Several unique properties of the dead matte contributing to the unexpected higher number of species and abundance of motile macroinvertebrates associated with this habitat are discussed. The findings have important implications for the conservation of bare P. oceanica matte, which has been generally viewed as a habitat of low ecological value.peer-reviewe

    Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates

    Get PDF
    Background Fermentation of bioethanol using lignocellulosic biomass as a raw material provides a sustainable alternative to current biofuel production methods by utilising waste food streams as raw material. Before lignocellulose can be fermented it requires physical, chemical and enzymatic treatment in order to release monosaccharides, a process that causes the chemical transformation of glucose and xylose into the cyclic aldehydes furfural and hydroxyfurfural. These furan compounds are potent inhibitors of Saccharomyces fermentation, and consequently furfural tolerant strains of Saccharomyces are required for lignocellulosic fermentation. Results This study investigated yeast tolerance to furfural and hydroxyfurfural using a collection of 71 environmental and industrial isolates of the baker’s yeast Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus. The Saccharomyces strains were initially screened for growth on media containing 100 mM glucose and 1.5 mg ml-1 furfural. Five strains were identified that showed a significant tolerance to growth in the presence of furfural and these were then screened for growth and ethanol production in the presence of increasing amounts (0.1-4 mg ml-1) of furfural. Conclusions Of the five furfural tolerant strains S. cerevisiae NCYC 3451 displayed the greatest furfural resistance, and was able to grow in the presence of up to 3.0 mg ml-1 furfural. Furthermore, ethanol production in this strain did not appear to be inhibited by furfural, with the highest ethanol yield observed at 3.0 mg ml-1 furfural. Although furfural resistance was not found to be a trait specific to any one particular lineage or population, three of the strains were isolated from environments where they might be continually exposed to low levels of furfural through the on-going natural degradation of lignocelluloses, and would therefore develop elevated levels of resistance to these furan compounds. Thus these strains represent good candidates for future studies of genetic variation relevant to understanding and manipulating furfural resistance and in the development of tolerant ethanologenic yeast strains for use in bioethanol production from lignocellulose processing

    Building development and roads: implications for the distribution of stone curlews across the Brecks

    Get PDF
    Background: Substantial new housing and infrastructure development planned within England has the potential to conflict with the nature conservation interests of protected sites. The Breckland area of eastern England (the Brecks) is designated as a Special Protection Area for a number of bird species, including the stone curlew (for which it holds more than 60% of the UK total population). We explore the effect of buildings and roads on the spatial distribution of stone curlew nests across the Brecks in order to inform strategic development plans to avoid adverse effects on such European protected sites. Methodology: Using data across all years (and subsets of years) over the period 1988 – 2006 but restricted to habitat areas of arable land with suitable soils, we assessed nest density in relation to the distances to nearest settlements and to major roads. Measures of the local density of nearby buildings, roads and traffic levels were assessed using normal kernel distance-weighting functions. Quasi-Poisson generalised linear mixed models allowing for spatial auto-correlation were fitted. Results: Significantly lower densities of stone curlew nests were found at distances up to 1500m from settlements, and distances up to 1000m or more from major (trunk) roads. The best fitting models involved optimally distance-weighted variables for the extent of nearby buildings and the trunk road traffic levels. Significance : The results and predictions from this study of past data suggests there is cause for concern that future housing development and associated road infrastructure within the Breckland area could have negative impacts on the nesting stone curlew population. Given the strict legal protection afforded to the SPA the planning and conservation bodies have subsequently agreed precautionary restrictions on building development within the distances identified and used the modelling predictions to agree mitigation measures for proposed trunk road developments

    The Formation of the First Low-Mass Stars From Gas With Low Carbon and Oxygen Abundances

    Full text link
    The first stars in the Universe are predicted to have been much more massive than the Sun. Gravitational condensation accompanied by cooling of the primordial gas due to molecular hydrogen, yields a minimum fragmentation scale of a few hundred solar masses. Numerical simulations indicate that once a gas clump acquires this mass, it undergoes a slow, quasi-hydrostatic contraction without further fragmentation. Here we show that as soon as the primordial gas - left over from the Big Bang - is enriched by supernovae to a carbon or oxygen abundance as small as ~0.01-0.1% of that found in the Sun, cooling by singly-ionized carbon or neutral oxygen can lead to the formation of low-mass stars. This mechanism naturally accommodates the discovery of solar mass stars with unusually low (10^{-5.3} of the solar value) iron abundance but with a high (10^{-1.3} solar) carbon abundance. The minimum stellar mass at early epochs is partially regulated by the temperature of the cosmic microwave background. The derived critical abundances can be used to identify those metal-poor stars in our Milky Way galaxy with elemental patterns imprinted by the first supernovae.Comment: 14 pages, 2 figures (appeared today in Nature

    Multiwavelength continuum sizes of protoplanetary discs: Scaling relations and implications for grain growth and radial drift

    Get PDF
    We analyse spatially resolved ALMA observations at 0.9, 1.3, and 3.1 mm for the 26 brightest protoplanetary discs in the Lupus star-forming region. We characterise the discs multi-wavelength brightness profiles by fitting the interferometric visibilities in a homogeneous way, obtaining effective disc sizes at the three wavelengths, spectral index profiles and optical depth estimates. We report three fundamental discoveries: first, the millimeter continuum size - luminosity relation already observed at 0.9 mm is also present at 1.3 mm with an identical slope, and at 3.1 mm with a steeper slope, confirming that emission at longer wavelengths becomes increasingly optically thin. Second, when observed at 3.1 mm the discs appear to be only 9% smaller than when observed at 0.9 mm, in tension with models of dust evolution which predict a starker difference. Third, by forward modelling the sample of measurements with a simple parametric disc model, we find that the presence of large grains (amax>1a_\mathrm{max}>1 mm) throughout the discs is the most favoured explanation for all discs as it reproduces simultaneously their spectral indices, optical depth, luminosity, and radial extent in the 0.9-1.3 mm wavelength range. We also find that the observations can be alternatively interpreted with the discs being dominated by optically thick, unresolved, substructures made of mm-sized grains with a high scattering albedo

    An Open-System Quantum Simulator with Trapped Ions

    Full text link
    The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating the systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we report the first realization of a toolbox for simulating an open quantum system with up to five qubits. Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate this engineering by the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see publication. Manuscript + Supplementary Informatio
    • …
    corecore